Abstract:Linguistic steganography enables covert communication through embedding secret messages into innocuous texts; however, current methods face critical limitations in payload capacity and security. Traditional modification-based methods introduce detectable anomalies, while retrieval-based strategies suffer from low embedding capacity. Modern generative steganography leverages language models to generate natural stego text but struggles with limited entropy in token predictions, further constraining capacity. To address these issues, we propose an entropy-driven framework called RTMStega that integrates rank-based adaptive coding and context-aware decompression with normalized entropy. By mapping secret messages to token probability ranks and dynamically adjusting sampling via context-aware entropy-based adjustments, RTMStega achieves a balance between payload capacity and imperceptibility. Experiments across diverse datasets and models demonstrate that RTMStega triples the payload capacity of mainstream generative steganography, reduces processing time by over 50%, and maintains high text quality, offering a trustworthy solution for secure and efficient covert communication.
Abstract:Diffusion models have advanced rapidly in recent years, producing high-fidelity images while raising concerns about intellectual property protection and the misuse of generative AI. Image watermarking for diffusion models, particularly Noise-as-Watermark (NaW) methods, encode watermark as specific standard Gaussian noise vector for image generation, embedding the infomation seamlessly while maintaining image quality. For detection, the generation process is inverted to recover the initial noise vector containing the watermark before extraction. However, existing NaW methods struggle to balance watermark robustness with generation diversity. Some methods achieve strong robustness by heavily constraining initial noise sampling, which degrades user experience, while others preserve diversity but prove too fragile for real-world deployment. To address this issue, we propose T2SMark, a two-stage watermarking scheme based on Tail-Truncated Sampling (TTS). Unlike prior methods that simply map bits to positive or negative values, TTS enhances robustness by embedding bits exclusively in the reliable tail regions while randomly sampling the central zone to preserve the latent distribution. Our two-stage framework then ensures sampling diversity by integrating a randomly generated session key into both encryption pipelines. We evaluate T2SMark on diffusion models with both U-Net and DiT backbones. Extensive experiments show that it achieves an optimal balance between robustness and diversity. Our code is available at \href{https://github.com/0xD009/T2SMark}{https://github.com/0xD009/T2SMark}.
Abstract:The rapid advancement of speech generation models has heightened privacy and security concerns related to voice cloning (VC). Recent studies have investigated disrupting unauthorized voice cloning by introducing adversarial perturbations. However, determined attackers can mitigate these protective perturbations and successfully execute VC. In this study, we conduct the first systematic evaluation of these protective perturbations against VC under realistic threat models that include perturbation purification. Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models, which degrades the performance of VC. From this perspective, we propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution. Experimental results demonstrate that our method outperforms state-of-the-art purification methods in disrupting VC defenses. Our study reveals the limitations of adversarial perturbation-based VC defenses and underscores the urgent need for more robust solutions to mitigate the security and privacy risks posed by VC. The code and audio samples are available at https://de-antifake.github.io.
Abstract:This paper presents ScaleCap, an inference-time scalable image captioning strategy that generates comprehensive and detailed image captions. The key challenges of high-quality image captioning lie in the inherent biases of LVLMs: multimodal bias resulting in imbalanced descriptive granularity, offering detailed accounts of some elements while merely skimming over others; linguistic bias leading to hallucinated descriptions of non-existent objects. To address these issues, we propose a scalable debiased captioning strategy, which continuously enriches and calibrates the caption with increased inference budget. Specifically, we propose two novel components: heuristic question answering and contrastive sentence rating. The former generates content-specific questions based on the image and answers them to progressively inject relevant information into the caption. The latter employs sentence-level offline contrastive decoding to effectively identify and eliminate hallucinations caused by linguistic biases. With increased inference cost, more heuristic questions are raised by ScaleCap to progressively capture additional visual details, generating captions that are more accurate, balanced, and informative. Extensive modality alignment experiments demonstrate the effectiveness of ScaleCap. Annotating 450K images with ScaleCap and using them for LVLM pretraining leads to consistent performance gains across 11 widely used benchmarks. Furthermore, ScaleCap showcases superb richness and fidelity of generated captions with two additional tasks: replacing images with captions in VQA task, and reconstructing images from captions to assess semantic coverage. Code is available at https://github.com/Cooperx521/ScaleCap.
Abstract:360 video captures the complete surrounding scenes with the ultra-large field of view of 360X180. This makes 360 scene understanding tasks, eg, segmentation and tracking, crucial for appications, such as autonomous driving, robotics. With the recent emergence of foundation models, the community is, however, impeded by the lack of large-scale, labelled real-world datasets. This is caused by the inherent spherical properties, eg, severe distortion in polar regions, and content discontinuities, rendering the annotation costly yet complex. This paper introduces Leader360V, the first large-scale, labeled real-world 360 video datasets for instance segmentation and tracking. Our datasets enjoy high scene diversity, ranging from indoor and urban settings to natural and dynamic outdoor scenes. To automate annotation, we design an automatic labeling pipeline, which subtly coordinates pre-trained 2D segmentors and large language models to facilitate the labeling. The pipeline operates in three novel stages. Specifically, in the Initial Annotation Phase, we introduce a Semantic- and Distortion-aware Refinement module, which combines object mask proposals from multiple 2D segmentors with LLM-verified semantic labels. These are then converted into mask prompts to guide SAM2 in generating distortion-aware masks for subsequent frames. In the Auto-Refine Annotation Phase, missing or incomplete regions are corrected either by applying the SDR again or resolving the discontinuities near the horizontal borders. The Manual Revision Phase finally incorporates LLMs and human annotators to further refine and validate the annotations. Extensive user studies and evaluations demonstrate the effectiveness of our labeling pipeline. Meanwhile, experiments confirm that Leader360V significantly enhances model performance for 360 video segmentation and tracking, paving the way for more scalable 360 scene understanding.
Abstract:Debugging is a critical aspect of LLM's coding ability. Early debugging efforts primarily focused on code-level analysis, which often falls short when addressing complex programming errors that require a deeper understanding of algorithmic logic. Recent advancements in large language models (LLMs) have shifted attention toward leveraging natural language reasoning to enhance code-related tasks. However, two fundamental questions remain unanswered: What type of natural language format is most effective for debugging tasks? And what specific benefits does natural language reasoning bring to the debugging process? In this paper, we introduce NL-DEBUGGING, a novel framework that employs natural language as an intermediate representation to improve code debugging. By debugging at a natural language level, we demonstrate that NL-DEBUGGING outperforms traditional debugging methods and enables a broader modification space through direct refinement guided by execution feedback. Our findings highlight the potential of natural language reasoning to advance automated code debugging and address complex programming challenges.
Abstract:Ethical concerns surrounding copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models. One effective solution involves watermarking the generated images. Existing methods primarily focus on ensuring that watermark embedding does not degrade the model performance. However, they often overlook critical challenges in real-world deployment scenarios, such as the complexity of watermark key management, user-defined generation parameters, and the difficulty of verification by arbitrary third parties. To address this issue, we propose Gaussian Shading++, a diffusion model watermarking method tailored for real-world deployment. We propose a double-channel design that leverages pseudorandom error-correcting codes to encode the random seed required for watermark pseudorandomization, achieving performance-lossless watermarking under a fixed watermark key and overcoming key management challenges. Additionally, we model the distortions introduced during generation and inversion as an additive white Gaussian noise channel and employ a novel soft decision decoding strategy during extraction, ensuring strong robustness even when generation parameters vary. To enable third-party verification, we incorporate public key signatures, which provide a certain level of resistance against forgery attacks even when model inversion capabilities are fully disclosed. Extensive experiments demonstrate that Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness, making it a more practical solution for real-world deployment.
Abstract:Large-scale image retrieval using deep hashing has become increasingly popular due to the exponential growth of image data and the remarkable feature extraction capabilities of deep neural networks (DNNs). However, deep hashing methods are vulnerable to malicious attacks, including adversarial and backdoor attacks. It is worth noting that these attacks typically involve altering the query images, which is not a practical concern in real-world scenarios. In this paper, we point out that even clean query images can be dangerous, inducing malicious target retrieval results, like undesired or illegal images. To the best of our knowledge, we are the first to study data \textbf{p}oisoning \textbf{a}ttacks against \textbf{d}eep \textbf{hash}ing \textbf{(\textit{PADHASH})}. Specifically, we first train a surrogate model to simulate the behavior of the target deep hashing model. Then, a strict gradient matching strategy is proposed to generate the poisoned images. Extensive experiments on different models, datasets, hash methods, and hash code lengths demonstrate the effectiveness and generality of our attack method.




Abstract:Retrieval-Augmented Generation (RAG) improves Large Language Models (LLMs) by using external knowledge, but it struggles with precise entity information retrieval. In this paper, we proposed MES-RAG framework, which enhances entity-specific query handling and provides accurate, secure, and consistent responses. MES-RAG introduces proactive security measures that ensure system integrity by applying protections prior to data access. Additionally, the system supports real-time multi-modal outputs, including text, images, audio, and video, seamlessly integrating into existing RAG architectures. Experimental results demonstrate that MES-RAG significantly improves both accuracy and recall, highlighting its effectiveness in advancing the security and utility of question-answering, increasing accuracy to 0.83 (+0.25) on targeted task. Our code and data are available at https://github.com/wpydcr/MES-RAG.




Abstract:Entity Segmentation (ES) aims at identifying and segmenting distinct entities within an image without the need for predefined class labels. This characteristic makes ES well-suited to open-world applications with adaptation to diverse and dynamically changing environments, where new and previously unseen entities may appear frequently. Existing ES methods either require large annotated datasets or high training costs, limiting their scalability and adaptability. Recently, the Segment Anything Model (SAM), especially in its Automatic Mask Generation (AMG) mode, has shown potential for holistic image segmentation. However, it struggles with over-segmentation and under-segmentation, making it less effective for ES. In this paper, we introduce E-SAM, a novel training-free framework that exhibits exceptional ES capability. Specifically, we first propose Multi-level Mask Generation (MMG) that hierarchically processes SAM's AMG outputs to generate reliable object-level masks while preserving fine details at other levels. Entity-level Mask Refinement (EMR) then refines these object-level masks into accurate entity-level masks. That is, it separates overlapping masks to address the redundancy issues inherent in SAM's outputs and merges similar masks by evaluating entity-level consistency. Lastly, Under-Segmentation Refinement (USR) addresses under-segmentation by generating additional high-confidence masks fused with EMR outputs to produce the final ES map. These three modules are seamlessly optimized to achieve the best ES without additional training overhead. Extensive experiments demonstrate that E-SAM achieves state-of-the-art performance compared to prior ES methods, demonstrating a significant improvement by +30.1 on benchmark metrics.