Abstract:Prevalent retrieval-based tool-use pipelines struggle with a dual semantic challenge: their retrievers often employ encoders that fail to capture complex semantics, while the Large Language Model (LLM) itself lacks intrinsic tool knowledge from its natural language pretraining. Generative methods offer a powerful alternative by unifying selection and execution, tasking the LLM to directly learn and generate tool identifiers. However, the common practice of mapping each tool to a unique new token introduces substantial limitations: it creates a scalability and generalization crisis, as the vocabulary size explodes and each tool is assigned a semantically isolated token. This approach also creates a semantic bottleneck that hinders the learning of collaborative tool relationships, as the model must infer them from sparse co-occurrences of monolithic tool IDs within a vast library. To address these limitations, we propose ToolWeaver, a novel generative tool learning framework that encodes tools into hierarchical sequences. This approach makes vocabulary expansion logarithmic to the number of tools. Crucially, it enables the model to learn collaborative patterns from the dense co-occurrence of shared codes, rather than the sparse co-occurrence of monolithic tool IDs. We generate these structured codes through a novel tokenization process designed to weave together a tool's intrinsic semantics with its extrinsic co-usage patterns. These structured codes are then integrated into the LLM through a generative alignment stage, where the model is fine-tuned to produce the hierarchical code sequences. Evaluation results with nearly 47,000 tools show that ToolWeaver significantly outperforms state-of-the-art methods, establishing a more scalable, generalizable, and semantically-aware foundation for advanced tool-augmented agents.
Abstract:Reading measurement instruments is effortless for humans and requires relatively little domain expertise, yet it remains surprisingly challenging for current vision-language models (VLMs) as we find in preliminary evaluation. In this work, we introduce MeasureBench, a benchmark on visual measurement reading covering both real-world and synthesized images of various types of measurements, along with an extensible pipeline for data synthesis. Our pipeline procedurally generates a specified type of gauge with controllable visual appearance, enabling scalable variation in key details such as pointers, scales, fonts, lighting, and clutter. Evaluation on popular proprietary and open-weight VLMs shows that even the strongest frontier VLMs struggle measurement reading in general. A consistent failure mode is indicator localization: models can read digits or labels but misidentify the key positions of pointers or alignments, leading to big numeric errors despite plausible textual reasoning. We have also conducted preliminary experiments with reinforcement learning over synthetic data, and find encouraging results on in-domain synthetic subset but less promising for real-world images. Our analysis highlights a fundamental limitation of current VLMs in fine-grained spatial grounding. We hope this resource can help future advances on visually grounded numeracy and precise spatial perception of VLMs, bridging the gap between recognizing numbers and measuring the world.
Abstract:We present FlagEvalMM, an open-source evaluation framework designed to comprehensively assess multimodal models across a diverse range of vision-language understanding and generation tasks, such as visual question answering, text-to-image/video generation, and image-text retrieval. We decouple model inference from evaluation through an independent evaluation service, thus enabling flexible resource allocation and seamless integration of new tasks and models. Moreover, FlagEvalMM utilizes advanced inference acceleration tools (e.g., vLLM, SGLang) and asynchronous data loading to significantly enhance evaluation efficiency. Extensive experiments show that FlagEvalMM offers accurate and efficient insights into model strengths and limitations, making it a valuable tool for advancing multimodal research. The framework is publicly accessible athttps://github.com/flageval-baai/FlagEvalMM.