Abstract:Face swapping, recognized as a privacy and security concern, has prompted considerable defensive research. With the advancements in AI-generated content, the discrepancies between the real and swapped faces have become nuanced. Considering the difficulty of forged traces detection, we shift the focus to the face swapping purpose and proactively embed elaborate watermarks against unknown face swapping techniques. Given that the constant purpose is to swap the original face identity while preserving the background, we concentrate on the regions surrounding the face to ensure robust watermark generation, while embedding the contour texture and face identity information to achieve progressive image determination. The watermark is located in the facial contour and contains hybrid messages, dubbed the contour-hybrid watermark (CMark). Our approach generalizes face swapping detection without requiring any swapping techniques during training and the storage of large-scale messages in advance. Experiments conducted across 8 face swapping techniques demonstrate the superiority of our approach compared with state-of-the-art passive and proactive detectors while achieving a favorable balance between the image quality and watermark robustness.
Abstract:Video Class-Incremental Learning (VCIL) seeks to develop models that continuously learn new action categories over time without forgetting previously acquired knowledge. Unlike traditional Class-Incremental Learning (CIL), VCIL introduces the added complexity of spatiotemporal structures, making it particularly challenging to mitigate catastrophic forgetting while effectively capturing both frame-shared semantics and temporal dynamics. Existing approaches either rely on exemplar rehearsal, raising concerns over memory and privacy, or adapt static image-based methods that neglect temporal modeling. To address these limitations, we propose Spatiotemporal Preservation and Routing (StPR), a unified and exemplar-free VCIL framework that explicitly disentangles and preserves spatiotemporal information. First, we introduce Frame-Shared Semantics Distillation (FSSD), which identifies semantically stable and meaningful channels by jointly considering semantic sensitivity and classification contribution. These important semantic channels are selectively regularized to maintain prior knowledge while allowing for adaptation. Second, we design a Temporal Decomposition-based Mixture-of-Experts (TD-MoE), which dynamically routes task-specific experts based on their temporal dynamics, enabling inference without task ID or stored exemplars. Together, StPR effectively leverages spatial semantics and temporal dynamics, achieving a unified, exemplar-free VCIL framework. Extensive experiments on UCF101, HMDB51, and Kinetics400 show that our method outperforms existing baselines while offering improved interpretability and efficiency in VCIL. Code is available in the supplementary materials.
Abstract:Weakly Supervised Object Localization (WSOL), which aims to localize objects by only using image-level labels, has attracted much attention because of its low annotation cost in real applications. Current studies focus on the Class Activation Map (CAM) of CNN and the self-attention map of transformer to identify the region of objects. However, both CAM and self-attention maps can not learn pixel-level fine-grained information on the foreground objects, which hinders the further advance of WSOL. To address this problem, we initiatively leverage the capability of zero-shot generalization and fine-grained segmentation in Segment Anything Model (SAM) to boost the activation of integral object regions. Further, to alleviate the semantic ambiguity issue accrued in single point prompt-based SAM, we propose an innovative mask prompt to SAM (Pro2SAM) network with grid points for WSOL task. First, we devise a Global Token Transformer (GTFormer) to generate a coarse-grained foreground map as a flexible mask prompt, where the GTFormer jointly embeds patch tokens and novel global tokens to learn foreground semantics. Secondly, we deliver grid points as dense prompts into SAM to maximize the probability of foreground mask, which avoids the lack of objects caused by a single point/box prompt. Finally, we propose a pixel-level similarity metric to come true the mask matching from mask prompt to SAM, where the mask with the highest score is viewed as the final localization map. Experiments show that the proposed Pro2SAM achieves state-of-the-art performance on both CUB-200-2011 and ILSVRC, with 84.03\% and 66.85\% Top-1 Loc, respectively.
Abstract:Current RGB-D methods usually leverage large-scale backbones to improve accuracy but sacrifice efficiency. Meanwhile, several existing lightweight methods are difficult to achieve high-precision performance. To balance the efficiency and performance, we propose a Speed-Accuracy Tradeoff Network (SATNet) for Lightweight RGB-D SOD from three fundamental perspectives: depth quality, modality fusion, and feature representation. Concerning depth quality, we introduce the Depth Anything Model to generate high-quality depth maps,which effectively alleviates the multi-modal gaps in the current datasets. For modality fusion, we propose a Decoupled Attention Module (DAM) to explore the consistency within and between modalities. Here, the multi-modal features are decoupled into dual-view feature vectors to project discriminable information of feature maps. For feature representation, we develop a Dual Information Representation Module (DIRM) with a bi-directional inverted framework to enlarge the limited feature space generated by the lightweight backbones. DIRM models texture features and saliency features to enrich feature space, and employ two-way prediction heads to optimal its parameters through a bi-directional backpropagation. Finally, we design a Dual Feature Aggregation Module (DFAM) in the decoder to aggregate texture and saliency features. Extensive experiments on five public RGB-D SOD datasets indicate that the proposed SATNet excels state-of-the-art (SOTA) CNN-based heavyweight models and achieves a lightweight framework with 5.2 M parameters and 415 FPS.
Abstract:Unsupervised visible-infrared person re-identification (USL-VI-ReID) seeks to match pedestrian images of the same individual across different modalities without human annotations for model learning. Previous methods unify pseudo-labels of cross-modality images through label association algorithms and then design contrastive learning framework for global feature learning. However, these methods overlook the cross-modality variations in feature representation and pseudo-label distributions brought by fine-grained patterns. This insight results in insufficient modality-shared learning when only global features are optimized. To address this issue, we propose a Semantic-Aligned Learning with Collaborative Refinement (SALCR) framework, which builds up optimization objective for specific fine-grained patterns emphasized by each modality, thereby achieving complementary alignment between the label distributions of different modalities. Specifically, we first introduce a Dual Association with Global Learning (DAGI) module to unify the pseudo-labels of cross-modality instances in a bi-directional manner. Afterward, a Fine-Grained Semantic-Aligned Learning (FGSAL) module is carried out to explore part-level semantic-aligned patterns emphasized by each modality from cross-modality instances. Optimization objective is then formulated based on the semantic-aligned features and their corresponding label space. To alleviate the side-effects arising from noisy pseudo-labels, we propose a Global-Part Collaborative Refinement (GPCR) module to mine reliable positive sample sets for the global and part features dynamically and optimize the inter-instance relationships. Extensive experiments demonstrate the effectiveness of the proposed method, which achieves superior performances to state-of-the-art methods. Our code is available at \href{https://github.com/FranklinLingfeng/code-for-SALCR}.
Abstract:Multimodal medical images play a crucial role in the precise and comprehensive clinical diagnosis. Diffusion model is a powerful strategy to synthesize the required medical images. However, existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information and the weakening of low-frequency information. Thus, we propose a novel method based on dynamic frequency balance and knowledge guidance. Specifically, we first extract the low-frequency and high-frequency components by decomposing the critical features of the model using wavelet transform. Then, a dynamic frequency balance module is designed to adaptively adjust frequency for enhancing global low-frequency features and effective high-frequency details as well as suppressing high-frequency noise. To further overcome the challenges posed by the large differences between different medical modalities, we construct a knowledge-guided mechanism that fuses the prior clinical knowledge from a visual language model with visual features, to facilitate the generation of accurate anatomical structures. Experimental evaluations on multiple datasets show the proposed method achieves significant improvements in qualitative and quantitative assessments, verifying its effectiveness and superiority.
Abstract:Malicious applications of visual manipulation have raised serious threats to the security and reputation of users in many fields. To alleviate these issues, adversarial noise-based defenses have been enthusiastically studied in recent years. However, ``data-only" methods tend to distort fake samples in the low-level feature space rather than the high-level semantic space, leading to limitations in resisting malicious manipulation. Frontier research has shown that integrating knowledge in deep learning can produce reliable and generalizable solutions. Inspired by these, we propose a knowledge-guided adversarial defense (KGAD) to actively force malicious manipulation models to output semantically confusing samples. Specifically, in the process of generating adversarial noise, we focus on constructing significant semantic confusions at the domain-specific knowledge level, and exploit a metric closely related to visual perception to replace the general pixel-wise metrics. The generated adversarial noise can actively interfere with the malicious manipulation model by triggering knowledge-guided and perception-related disruptions in the fake samples. To validate the effectiveness of the proposed method, we conduct qualitative and quantitative experiments on human perception and visual quality assessment. The results on two different tasks both show that our defense provides better protection compared to state-of-the-art methods and achieves great generalizability.
Abstract:Can we accurately identify the true correspondences from multimodal datasets containing mismatched data pairs? Existing methods primarily emphasize the similarity matching between the representations of objects across modalities, potentially neglecting the crucial relation consistency within modalities that are particularly important for distinguishing the true and false correspondences. Such an omission often runs the risk of misidentifying negatives as positives, thus leading to unanticipated performance degradation. To address this problem, we propose a general Relation Consistency learning framework, namely ReCon, to accurately discriminate the true correspondences among the multimodal data and thus effectively mitigate the adverse impact caused by mismatches. Specifically, ReCon leverages a novel relation consistency learning to ensure the dual-alignment, respectively of, the cross-modal relation consistency between different modalities and the intra-modal relation consistency within modalities. Thanks to such dual constrains on relations, ReCon significantly enhances its effectiveness for true correspondence discrimination and therefore reliably filters out the mismatched pairs to mitigate the risks of wrong supervisions. Extensive experiments on three widely-used benchmark datasets, including Flickr30K, MS-COCO, and Conceptual Captions, are conducted to demonstrate the effectiveness and superiority of ReCon compared with other SOTAs. The code is available at: https://github.com/qxzha/ReCon.
Abstract:Deep neural networks are found to be vulnerable to adversarial noises. The prompt-based defense has been increasingly studied due to its high efficiency. However, existing prompt-based defenses mainly exploited mixed prompt patterns, where critical patterns closely related to object semantics lack sufficient focus. The phase and amplitude spectra have been proven to be highly related to specific semantic patterns and crucial for robustness. To this end, in this paper, we propose a Phase and Amplitude-aware Prompting (PAP) defense. Specifically, we construct phase-level and amplitude-level prompts for each class, and adjust weights for prompting according to the model's robust performance under these prompts during training. During testing, we select prompts for each image using its predicted label to obtain the prompted image, which is inputted to the model to get the final prediction. Experimental results demonstrate the effectiveness of our method.
Abstract:Despite advancements in cross-domain image translation, challenges persist in asymmetric tasks such as SAR-to-Optical and Sketch-to-Instance conversions, which involve transforming data from a less detailed domain into one with richer content. Traditional CNN-based methods are effective at capturing fine details but struggle with global structure, leading to unwanted merging of image regions. To address this, we propose the CNN-Swin Hybrid Network (CSHNet), which combines two key modules: Swin Embedded CNN (SEC) and CNN Embedded Swin (CES), forming the SEC-CES-Bottleneck (SCB). SEC leverages CNN's detailed feature extraction while integrating the Swin Transformer's structural bias. CES, in turn, preserves the Swin Transformer's global integrity, compensating for CNN's lack of focus on structure. Additionally, CSHNet includes two components designed to enhance cross-domain information retention: the Interactive Guided Connection (IGC), which enables dynamic information exchange between SEC and CES, and Adaptive Edge Perception Loss (AEPL), which maintains structural boundaries during translation. Experimental results show that CSHNet outperforms existing methods in both visual quality and performance metrics across scene-level and instance-level datasets. Our code is available at: https://github.com/XduShi/CSHNet.