Abstract:The rapid advancement of AI-generation models has enabled the creation of hyperrealistic imagery, posing ethical risks through widespread misinformation. Current deepfake detection methods, categorized as face specific detectors or general AI-generated detectors, lack transparency by framing detection as a classification task without explaining decisions. While several LLM-based approaches offer explainability, they suffer from coarse-grained analyses and dependency on labor-intensive annotations. This paper introduces RAIDX (Retrieval-Augmented Image Deepfake Detection and Explainability), a novel deepfake detection framework integrating Retrieval-Augmented Generation (RAG) and Group Relative Policy Optimization (GRPO) to enhance detection accuracy and decision explainability. Specifically, RAIDX leverages RAG to incorporate external knowledge for improved detection accuracy and employs GRPO to autonomously generate fine-grained textual explanations and saliency maps, eliminating the need for extensive manual annotations. Experiments on multiple benchmarks demonstrate RAIDX's effectiveness in identifying real or fake, and providing interpretable rationales in both textual descriptions and saliency maps, achieving state-of-the-art detection performance while advancing transparency in deepfake identification. RAIDX represents the first unified framework to synergize RAG and GRPO, addressing critical gaps in accuracy and explainability. Our code and models will be publicly available.
Abstract:Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.
Abstract:Advances in AI generative models facilitate super-realistic video synthesis, amplifying misinformation risks via social media and eroding trust in digital content. Several research works have explored new deepfake detection methods on AI-generated images to alleviate these risks. However, with the fast development of video generation models, such as Sora and WanX, there is currently a lack of large-scale, high-quality AI-generated video datasets for forgery detection. In addition, existing detection approaches predominantly treat the task as binary classification, lacking explainability in model decision-making and failing to provide actionable insights or guidance for the public. To address these challenges, we propose \textbf{GenBuster-200K}, a large-scale AI-generated video dataset featuring 200K high-resolution video clips, diverse latest generative techniques, and real-world scenes. We further introduce \textbf{BusterX}, a novel AI-generated video detection and explanation framework leveraging multimodal large language model (MLLM) and reinforcement learning for authenticity determination and explainable rationale. To our knowledge, GenBuster-200K is the {\it \textbf{first}} large-scale, high-quality AI-generated video dataset that incorporates the latest generative techniques for real-world scenarios. BusterX is the {\it \textbf{first}} framework to integrate MLLM with reinforcement learning for explainable AI-generated video detection. Extensive comparisons with state-of-the-art methods and ablation studies validate the effectiveness and generalizability of BusterX. The code, models, and datasets will be released.