Alert button
Picture for Tongtong Zhao

Tongtong Zhao

Alert button

AIM 2020: Scene Relighting and Illumination Estimation Challenge

Sep 27, 2020
Majed El Helou, Ruofan Zhou, Sabine Süsstrunk, Radu Timofte, Mahmoud Afifi, Michael S. Brown, Kele Xu, Hengxing Cai, Yuzhong Liu, Li-Wen Wang, Zhi-Song Liu, Chu-Tak Li, Sourya Dipta Das, Nisarg A. Shah, Akashdeep Jassal, Tongtong Zhao, Shanshan Zhao, Sabari Nathan, M. Parisa Beham, R. Suganya, Qing Wang, Zhongyun Hu, Xin Huang, Yaning Li, Maitreya Suin, Kuldeep Purohit, A. N. Rajagopalan, Densen Puthussery, Hrishikesh P S, Melvin Kuriakose, Jiji C V, Yu Zhu, Liping Dong, Zhuolong Jiang, Chenghua Li, Cong Leng, Jian Cheng

Figure 1 for AIM 2020: Scene Relighting and Illumination Estimation Challenge
Figure 2 for AIM 2020: Scene Relighting and Illumination Estimation Challenge
Figure 3 for AIM 2020: Scene Relighting and Illumination Estimation Challenge
Figure 4 for AIM 2020: Scene Relighting and Illumination Estimation Challenge

We review the AIM 2020 challenge on virtual image relighting and illumination estimation. This paper presents the novel VIDIT dataset used in the challenge and the different proposed solutions and final evaluation results over the 3 challenge tracks. The first track considered one-to-one relighting; the objective was to relight an input photo of a scene with a different color temperature and illuminant orientation (i.e., light source position). The goal of the second track was to estimate illumination settings, namely the color temperature and orientation, from a given image. Lastly, the third track dealt with any-to-any relighting, thus a generalization of the first track. The target color temperature and orientation, rather than being pre-determined, are instead given by a guide image. Participants were allowed to make use of their track 1 and 2 solutions for track 3. The tracks had 94, 52, and 56 registered participants, respectively, leading to 20 confirmed submissions in the final competition stage.

* ECCVW 2020. Data and more information on https://github.com/majedelhelou/VIDIT 
Viaarxiv icon

AIM 2020 Challenge on Real Image Super-Resolution: Methods and Results

Sep 25, 2020
Pengxu Wei, Hannan Lu, Radu Timofte, Liang Lin, Wangmeng Zuo, Zhihong Pan, Baopu Li, Teng Xi, Yanwen Fan, Gang Zhang, Jingtuo Liu, Junyu Han, Errui Ding, Tangxin Xie, Liang Cao, Yan Zou, Yi Shen, Jialiang Zhang, Yu Jia, Kaihua Cheng, Chenhuan Wu, Yue Lin, Cen Liu, Yunbo Peng, Xueyi Zou, Zhipeng Luo, Yuehan Yao, Zhenyu Xu, Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Keon-Hee Ahn, Jun-Hyuk Kim, Jun-Ho Choi, Jong-Seok Lee, Tongtong Zhao, Shanshan Zhao, Yoseob Han, Byung-Hoon Kim, JaeHyun Baek, Haoning Wu, Dejia Xu, Bo Zhou, Wei Guan, Xiaobo Li, Chen Ye, Hao Li, Haoyu Zhong, Yukai Shi, Zhijing Yang, Xiaojun Yang, Haoyu Zhong, Xin Li, Xin Jin, Yaojun Wu, Yingxue Pang, Sen Liu, Zhi-Song Liu, Li-Wen Wang, Chu-Tak Li, Marie-Paule Cani, Wan-Chi Siu, Yuanbo Zhou, Rao Muhammad Umer, Christian Micheloni, Xiaofeng Cong, Rajat Gupta, Keon-Hee Ahn, Jun-Hyuk Kim, Jun-Ho Choi, Jong-Seok Lee, Feras Almasri, Thomas Vandamme, Olivier Debeir

Figure 1 for AIM 2020 Challenge on Real Image Super-Resolution: Methods and Results
Figure 2 for AIM 2020 Challenge on Real Image Super-Resolution: Methods and Results
Figure 3 for AIM 2020 Challenge on Real Image Super-Resolution: Methods and Results
Figure 4 for AIM 2020 Challenge on Real Image Super-Resolution: Methods and Results

This paper introduces the real image Super-Resolution (SR) challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2020. This challenge involves three tracks to super-resolve an input image for $\times$2, $\times$3 and $\times$4 scaling factors, respectively. The goal is to attract more attention to realistic image degradation for the SR task, which is much more complicated and challenging, and contributes to real-world image super-resolution applications. 452 participants were registered for three tracks in total, and 24 teams submitted their results. They gauge the state-of-the-art approaches for real image SR in terms of PSNR and SSIM.

* European Conference on Computer Vision Workshops, 2020  
Viaarxiv icon

AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results

Sep 15, 2020
Kai Zhang, Martin Danelljan, Yawei Li, Radu Timofte, Jie Liu, Jie Tang, Gangshan Wu, Yu Zhu, Xiangyu He, Wenjie Xu, Chenghua Li, Cong Leng, Jian Cheng, Guangyang Wu, Wenyi Wang, Xiaohong Liu, Hengyuan Zhao, Xiangtao Kong, Jingwen He, Yu Qiao, Chao Dong, Xiaotong Luo, Liang Chen, Jiangtao Zhang, Maitreya Suin, Kuldeep Purohit, A. N. Rajagopalan, Xiaochuan Li, Zhiqiang Lang, Jiangtao Nie, Wei Wei, Lei Zhang, Abdul Muqeet, Jiwon Hwang, Subin Yang, JungHeum Kang, Sung-Ho Bae, Yongwoo Kim, Liang Chen, Jiangtao Zhang, Xiaotong Luo, Yanyun Qu, Geun-Woo Jeon, Jun-Ho Choi, Jun-Hyuk Kim, Jong-Seok Lee, Steven Marty, Eric Marty, Dongliang Xiong, Siang Chen, Lin Zha, Jiande Jiang, Xinbo Gao, Wen Lu, Haicheng Wang, Vineeth Bhaskara, Alex Levinshtein, Stavros Tsogkas, Allan Jepson, Xiangzhen Kong, Tongtong Zhao, Shanshan Zhao, Hrishikesh P S, Densen Puthussery, Jiji C V, Nan Nan, Shuai Liu, Jie Cai, Zibo Meng, Jiaming Ding, Chiu Man Ho, Xuehui Wang, Qiong Yan, Yuzhi Zhao, Long Chen, Jiangtao Zhang, Xiaotong Luo, Liang Chen, Yanyun Qu, Long Sun, Wenhao Wang, Zhenbing Liu, Rushi Lan, Rao Muhammad Umer, Christian Micheloni

Figure 1 for AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results
Figure 2 for AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results
Figure 3 for AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results
Figure 4 for AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results

This paper reviews the AIM 2020 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The challenge task was to super-resolve an input image with a magnification factor x4 based on a set of prior examples of low and corresponding high resolution images. The goal is to devise a network that reduces one or several aspects such as runtime, parameter count, FLOPs, activations, and memory consumption while at least maintaining PSNR of MSRResNet. The track had 150 registered participants, and 25 teams submitted the final results. They gauge the state-of-the-art in efficient single image super-resolution.

Viaarxiv icon

AIM 2020 Challenge on Video Extreme Super-Resolution: Methods and Results

Sep 14, 2020
Dario Fuoli, Zhiwu Huang, Shuhang Gu, Radu Timofte, Arnau Raventos, Aryan Esfandiari, Salah Karout, Xuan Xu, Xin Li, Xin Xiong, Jinge Wang, Pablo Navarrete Michelini, Wenhao Zhang, Dongyang Zhang, Hanwei Zhu, Dan Xia, Haoyu Chen, Jinjin Gu, Zhi Zhang, Tongtong Zhao, Shanshan Zhao, Kazutoshi Akita, Norimichi Ukita, Hrishikesh P S, Densen Puthussery, Jiji C V

This paper reviews the video extreme super-resolution challenge associated with the AIM 2020 workshop at ECCV 2020. Common scaling factors for learned video super-resolution (VSR) do not go beyond factor 4. Missing information can be restored well in this region, especially in HR videos, where the high-frequency content mostly consists of texture details. The task in this challenge is to upscale videos with an extreme factor of 16, which results in more serious degradations that also affect the structural integrity of the videos. A single pixel in the low-resolution (LR) domain corresponds to 256 pixels in the high-resolution (HR) domain. Due to this massive information loss, it is hard to accurately restore the missing information. Track 1 is set up to gauge the state-of-the-art for such a demanding task, where fidelity to the ground truth is measured by PSNR and SSIM. Perceptually higher quality can be achieved in trade-off for fidelity by generating plausible high-frequency content. Track 2 therefore aims at generating visually pleasing results, which are ranked according to human perception, evaluated by a user study. In contrast to single image super-resolution (SISR), VSR can benefit from additional information in the temporal domain. However, this also imposes an additional requirement, as the generated frames need to be consistent along time.

Viaarxiv icon

UDC 2020 Challenge on Image Restoration of Under-Display Camera: Methods and Results

Aug 18, 2020
Yuqian Zhou, Michael Kwan, Kyle Tolentino, Neil Emerton, Sehoon Lim, Tim Large, Lijiang Fu, Zhihong Pan, Baopu Li, Qirui Yang, Yihao Liu, Jigang Tang, Tao Ku, Shibin Ma, Bingnan Hu, Jiarong Wang, Densen Puthussery, Hrishikesh P S, Melvin Kuriakose, Jiji C V, Varun Sundar, Sumanth Hegde, Divya Kothandaraman, Kaushik Mitra, Akashdeep Jassal, Nisarg A. Shah, Sabari Nathan, Nagat Abdalla Esiad Rahel, Dafan Chen, Shichao Nie, Shuting Yin, Chengconghui Ma, Haoran Wang, Tongtong Zhao, Shanshan Zhao, Joshua Rego, Huaijin Chen, Shuai Li, Zhenhua Hu, Kin Wai Lau, Lai-Man Po, Dahai Yu, Yasar Abbas Ur Rehman, Yiqun Li, Lianping Xing

Figure 1 for UDC 2020 Challenge on Image Restoration of Under-Display Camera: Methods and Results
Figure 2 for UDC 2020 Challenge on Image Restoration of Under-Display Camera: Methods and Results
Figure 3 for UDC 2020 Challenge on Image Restoration of Under-Display Camera: Methods and Results
Figure 4 for UDC 2020 Challenge on Image Restoration of Under-Display Camera: Methods and Results

This paper is the report of the first Under-Display Camera (UDC) image restoration challenge in conjunction with the RLQ workshop at ECCV 2020. The challenge is based on a newly-collected database of Under-Display Camera. The challenge tracks correspond to two types of display: a 4k Transparent OLED (T-OLED) and a phone Pentile OLED (P-OLED). Along with about 150 teams registered the challenge, eight and nine teams submitted the results during the testing phase for each track. The results in the paper are state-of-the-art restoration performance of Under-Display Camera Restoration. Datasets and paper are available at https://yzhouas.github.io/projects/UDC/udc.html.

* 15 pages 
Viaarxiv icon

NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results

May 05, 2020
Andreas Lugmayr, Martin Danelljan, Radu Timofte, Namhyuk Ahn, Dongwoon Bai, Jie Cai, Yun Cao, Junyang Chen, Kaihua Cheng, SeYoung Chun, Wei Deng, Mostafa El-Khamy, Chiu Man Ho, Xiaozhong Ji, Amin Kheradmand, Gwantae Kim, Hanseok Ko, Kanghyu Lee, Jungwon Lee, Hao Li, Ziluan Liu, Zhi-Song Liu, Shuai Liu, Yunhua Lu, Zibo Meng, Pablo Navarrete Michelini, Christian Micheloni, Kalpesh Prajapati, Haoyu Ren, Yong Hyeok Seo, Wan-Chi Siu, Kyung-Ah Sohn, Ying Tai, Rao Muhammad Umer, Shuangquan Wang, Huibing Wang, Timothy Haoning Wu, Haoning Wu, Biao Yang, Fuzhi Yang, Jaejun Yoo, Tongtong Zhao, Yuanbo Zhou, Haijie Zhuo, Ziyao Zong, Xueyi Zou

Figure 1 for NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results
Figure 2 for NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results
Figure 3 for NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results
Figure 4 for NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results

This paper reviews the NTIRE 2020 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resolution images are unavailable. For training, only one set of source input images is therefore provided along with a set of unpaired high-quality target images. In Track 1: Image Processing artifacts, the aim is to super-resolve images with synthetically generated image processing artifacts. This allows for quantitative benchmarking of the approaches \wrt a ground-truth image. In Track 2: Smartphone Images, real low-quality smart phone images have to be super-resolved. In both tracks, the ultimate goal is to achieve the best perceptual quality, evaluated using a human study. This is the second challenge on the subject, following AIM 2019, targeting to advance the state-of-the-art in super-resolution. To measure the performance we use the benchmark protocol from AIM 2019. In total 22 teams competed in the final testing phase, demonstrating new and innovative solutions to the problem.

Viaarxiv icon

NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and Results

May 03, 2020
Kai Zhang, Shuhang Gu, Radu Timofte, Taizhang Shang, Qiuju Dai, Shengchen Zhu, Tong Yang, Yandong Guo, Younghyun Jo, Sejong Yang, Seon Joo Kim, Lin Zha, Jiande Jiang, Xinbo Gao, Wen Lu, Jing Liu, Kwangjin Yoon, Taegyun Jeon, Kazutoshi Akita, Takeru Ooba, Norimichi Ukita, Zhipeng Luo, Yuehan Yao, Zhenyu Xu, Dongliang He, Wenhao Wu, Yukang Ding, Chao Li, Fu Li, Shilei Wen, Jianwei Li, Fuzhi Yang, Huan Yang, Jianlong Fu, Byung-Hoon Kim, JaeHyun Baek, Jong Chul Ye, Yuchen Fan, Thomas S. Huang, Junyeop Lee, Bokyeung Lee, Jungki Min, Gwantae Kim, Kanghyu Lee, Jaihyun Park, Mykola Mykhailych, Haoyu Zhong, Yukai Shi, Xiaojun Yang, Zhijing Yang, Liang Lin, Tongtong Zhao, Jinjia Peng, Huibing Wang, Zhi Jin, Jiahao Wu, Yifu Chen, Chenming Shang, Huanrong Zhang, Jeongki Min, Hrishikesh P S, Densen Puthussery, Jiji C V

Figure 1 for NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and Results
Figure 2 for NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and Results
Figure 3 for NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and Results
Figure 4 for NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and Results

This paper reviews the NTIRE 2020 challenge on perceptual extreme super-resolution with focus on proposed solutions and results. The challenge task was to super-resolve an input image with a magnification factor 16 based on a set of prior examples of low and corresponding high resolution images. The goal is to obtain a network design capable to produce high resolution results with the best perceptual quality and similar to the ground truth. The track had 280 registered participants, and 19 teams submitted the final results. They gauge the state-of-the-art in single image super-resolution.

* CVPRW 2020 
Viaarxiv icon

Attribute-guided Feature Learning Network for Vehicle Re-identification

Jan 12, 2020
Huibing Wang, Jinjia Peng, Dongyan Chen, Guangqi Jiang, Tongtong Zhao, Xianping Fu

Figure 1 for Attribute-guided Feature Learning Network for Vehicle Re-identification
Figure 2 for Attribute-guided Feature Learning Network for Vehicle Re-identification
Figure 3 for Attribute-guided Feature Learning Network for Vehicle Re-identification
Figure 4 for Attribute-guided Feature Learning Network for Vehicle Re-identification

Vehicle re-identification (reID) plays an important role in the automatic analysis of the increasing urban surveillance videos, which has become a hot topic in recent years. However, it poses the critical but challenging problem that is caused by various viewpoints of vehicles, diversified illuminations and complicated environments. Till now, most existing vehicle reID approaches focus on learning metrics or ensemble to derive better representation, which are only take identity labels of vehicle into consideration. However, the attributes of vehicle that contain detailed descriptions are beneficial for training reID model. Hence, this paper proposes a novel Attribute-Guided Network (AGNet), which could learn global representation with the abundant attribute features in an end-to-end manner. Specially, an attribute-guided module is proposed in AGNet to generate the attribute mask which could inversely guide to select discriminative features for category classification. Besides that, in our proposed AGNet, an attribute-based label smoothing (ALS) loss is presented to better train the reID model, which can strength the distinct ability of vehicle reID model to regularize AGNet model according to the attributes. Comprehensive experimental results clearly demonstrate that our method achieves excellent performance on both VehicleID dataset and VeRi-776 dataset.

Viaarxiv icon

Eliminating cross-camera bias for vehicle re-identification

Dec 21, 2019
Jinjia Peng, Guangqi Jiang, Dongyan Chen, Tongtong Zhao, Huibing Wang, Xianping Fu

Figure 1 for Eliminating cross-camera bias for vehicle re-identification
Figure 2 for Eliminating cross-camera bias for vehicle re-identification
Figure 3 for Eliminating cross-camera bias for vehicle re-identification
Figure 4 for Eliminating cross-camera bias for vehicle re-identification

Vehicle re-identification (reID) often requires recognize a target vehicle in large datasets captured from multi-cameras. It plays an important role in the automatic analysis of the increasing urban surveillance videos, which has become a hot topic in recent years. However, the appearance of vehicle images is easily affected by the environment that various illuminations, different backgrounds and viewpoints, which leads to the large bias between different cameras. To address this problem, this paper proposes a cross-camera adaptation framework (CCA), which smooths the bias by exploiting the common space between cameras for all samples. CCA first transfers images from multi-cameras into one camera to reduce the impact of the illumination and resolution, which generates the samples with the similar distribution. Then, to eliminate the influence of background and focus on the valuable parts, we propose an attention alignment network (AANet) to learn powerful features for vehicle reID. Specially, in AANet, the spatial transfer network with attention module is introduced to locate a series of the most discriminative regions with high-attention weights and suppress the background. Moreover, comprehensive experimental results have demonstrated that our proposed CCA can achieve excellent performances on benchmark datasets VehicleID and VeRi-776.

Viaarxiv icon

Cross Domain Knowledge Transfer for Unsupervised Vehicle Re-identification

Mar 19, 2019
Jinjia Peng, Huibing Wang, Tongtong Zhao, Xianping Fu

Figure 1 for Cross Domain Knowledge Transfer for Unsupervised Vehicle Re-identification
Figure 2 for Cross Domain Knowledge Transfer for Unsupervised Vehicle Re-identification
Figure 3 for Cross Domain Knowledge Transfer for Unsupervised Vehicle Re-identification
Figure 4 for Cross Domain Knowledge Transfer for Unsupervised Vehicle Re-identification

Vehicle re-identification (reID) is to identify a target vehicle in different cameras with non-overlapping views. When deploy the well-trained model to a new dataset directly, there is a severe performance drop because of differences among datasets named domain bias. To address this problem, this paper proposes an domain adaptation framework which contains an image-to-image translation network named vehicle transfer generative adversarial network (VTGAN) and an attention-based feature learning network (ATTNet). VTGAN could make images from the source domain (well-labeled) have the style of target domain (unlabeled) and preserve identity information of source domain. To further improve the domain adaptation ability for various backgrounds, ATTNet is proposed to train generated images with the attention structure for vehicle reID. Comprehensive experimental results clearly demonstrate that our method achieves excellent performance on VehicleID dataset.

Viaarxiv icon