Abstract:Image Restoration (IR) aims to recover high quality images from degraded inputs affected by various corruptions such as noise, blur, haze, rain, and low light conditions. Despite recent advances, most existing approaches treat IR as a direct mapping problem, relying on shared representations across degradation types without modeling their structural diversity. In this work, we present MIRAGE, a unified and lightweight framework for all in one IR that explicitly decomposes the input feature space into three semantically aligned parallel branches, each processed by a specialized module attention for global context, convolution for local textures, and MLP for channel-wise statistics. This modular decomposition significantly improves generalization and efficiency across diverse degradations. Furthermore, we introduce a cross layer contrastive learning scheme that aligns shallow and latent features to enhance the discriminability of shared representations. To better capture the underlying geometry of feature representations, we perform contrastive learning in a Symmetric Positive Definite (SPD) manifold space rather than the conventional Euclidean space. Extensive experiments show that MIRAGE not only achieves new state of the art performance across a variety of degradation types but also offers a scalable solution for challenging all-in-one IR scenarios. Our code and models will be publicly available at https://amazingren.github.io/MIRAGE/.
Abstract:We introduce MiniMax-Speech, an autoregressive Transformer-based Text-to-Speech (TTS) model that generates high-quality speech. A key innovation is our learnable speaker encoder, which extracts timbre features from a reference audio without requiring its transcription. This enables MiniMax-Speech to produce highly expressive speech with timbre consistent with the reference in a zero-shot manner, while also supporting one-shot voice cloning with exceptionally high similarity to the reference voice. In addition, the overall quality of the synthesized audio is enhanced through the proposed Flow-VAE. Our model supports 32 languages and demonstrates excellent performance across multiple objective and subjective evaluations metrics. Notably, it achieves state-of-the-art (SOTA) results on objective voice cloning metrics (Word Error Rate and Speaker Similarity) and has secured the top position on the public TTS Arena leaderboard. Another key strength of MiniMax-Speech, granted by the robust and disentangled representations from the speaker encoder, is its extensibility without modifying the base model, enabling various applications such as: arbitrary voice emotion control via LoRA; text to voice (T2V) by synthesizing timbre features directly from text description; and professional voice cloning (PVC) by fine-tuning timbre features with additional data. We encourage readers to visit https://minimax-ai.github.io/tts_tech_report for more examples.
Abstract:Restoring any degraded image efficiently via just one model has become increasingly significant and impactful, especially with the proliferation of mobile devices. Traditional solutions typically involve training dedicated models per degradation, resulting in inefficiency and redundancy. More recent approaches either introduce additional modules to learn visual prompts, significantly increasing model size, or incorporate cross-modal transfer from large language models trained on vast datasets, adding complexity to the system architecture. In contrast, our approach, termed AnyIR, takes a unified path that leverages inherent similarity across various degradations to enable both efficient and comprehensive restoration through a joint embedding mechanism, without scaling up the model or relying on large language models.Specifically, we examine the sub-latent space of each input, identifying key components and reweighting them first in a gated manner. To fuse the intrinsic degradation awareness and the contextualized attention, a spatial-frequency parallel fusion strategy is proposed for enhancing spatial-aware local-global interactions and enriching the restoration details from the frequency perspective. Extensive benchmarking in the all-in-one restoration setting confirms AnyIR's SOTA performance, reducing model complexity by around 82\% in parameters and 85\% in FLOPs. Our code will be available at our Project page (https://amazingren.github.io/AnyIR/)
Abstract:This paper presents an overview of the NTIRE 2025 Image Denoising Challenge ({\sigma} = 50), highlighting the proposed methodologies and corresponding results. The primary objective is to develop a network architecture capable of achieving high-quality denoising performance, quantitatively evaluated using PSNR, without constraints on computational complexity or model size. The task assumes independent additive white Gaussian noise (AWGN) with a fixed noise level of 50. A total of 290 participants registered for the challenge, with 20 teams successfully submitting valid results, providing insights into the current state-of-the-art in image denoising.
Abstract:This paper presents a comprehensive review of the NTIRE 2025 Challenge on Single-Image Efficient Super-Resolution (ESR). The challenge aimed to advance the development of deep models that optimize key computational metrics, i.e., runtime, parameters, and FLOPs, while achieving a PSNR of at least 26.90 dB on the $\operatorname{DIV2K\_LSDIR\_valid}$ dataset and 26.99 dB on the $\operatorname{DIV2K\_LSDIR\_test}$ dataset. A robust participation saw \textbf{244} registered entrants, with \textbf{43} teams submitting valid entries. This report meticulously analyzes these methods and results, emphasizing groundbreaking advancements in state-of-the-art single-image ESR techniques. The analysis highlights innovative approaches and establishes benchmarks for future research in the field.
Abstract:Visual Autoregressive (VAR) modeling has gained popularity for its shift towards next-scale prediction. However, existing VAR paradigms process the entire token map at each scale step, leading to the complexity and runtime scaling dramatically with image resolution. To address this challenge, we propose FastVAR, a post-training acceleration method for efficient resolution scaling with VARs. Our key finding is that the majority of latency arises from the large-scale step where most tokens have already converged. Leveraging this observation, we develop the cached token pruning strategy that only forwards pivotal tokens for scale-specific modeling while using cached tokens from previous scale steps to restore the pruned slots. This significantly reduces the number of forwarded tokens and improves the efficiency at larger resolutions. Experiments show the proposed FastVAR can further speedup FlashAttention-accelerated VAR by 2.7$\times$ with negligible performance drop of <1%. We further extend FastVAR to zero-shot generation of higher resolution images. In particular, FastVAR can generate one 2K image with 15GB memory footprints in 1.5s on a single NVIDIA 3090 GPU. Code is available at https://github.com/csguoh/FastVAR.
Abstract:State-Space Models (SSMs) have attracted considerable attention in Image Restoration (IR) due to their ability to scale linearly sequence length while effectively capturing long-distance dependencies. However, deploying SSMs to edge devices is challenging due to the constraints in memory, computing capacity, and power consumption, underscoring the need for efficient compression strategies. While low-bit quantization is an efficient model compression strategy for reducing size and accelerating IR tasks, SSM suffers substantial performance drops at ultra-low bit-widths (2-4 bits), primarily due to outliers that exacerbate quantization error. To address this challenge, we propose Q-MambaIR, an accurate, efficient, and flexible Quantized Mamba for IR tasks. Specifically, we introduce a Statistical Dynamic-balancing Learnable Scalar (DLS) to dynamically adjust the quantization mapping range, thereby mitigating the peak truncation loss caused by extreme values. Furthermore, we design a Range-floating Flexible Allocator (RFA) with an adaptive threshold to flexibly round values. This approach preserves high-frequency details and maintains the SSM's feature extraction capability. Notably, RFA also enables pre-deployment weight quantization, striking a balance between computational efficiency and model accuracy. Extensive experiments on IR tasks demonstrate that Q-MambaIR consistently outperforms existing quantized SSMs, achieving much higher state-of-the-art (SOTA) accuracy results with only a negligible increase in training computation and storage saving.
Abstract:Video camouflaged object segmentation (VCOS), aiming at segmenting camouflaged objects that seamlessly blend into their environment, is a fundamental vision task with various real-world applications. With the release of SAM2, video segmentation has witnessed significant progress. However, SAM2's capability of segmenting camouflaged videos is suboptimal, especially when given simple prompts such as point and box. To address the problem, we propose Camouflaged SAM2 (CamSAM2), which enhances SAM2's ability to handle camouflaged scenes without modifying SAM2's parameters. Specifically, we introduce a decamouflaged token to provide the flexibility of feature adjustment for VCOS. To make full use of fine-grained and high-resolution features from the current frame and previous frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fusion (EOF) modules, respectively. Object prototype generation (OPG) is introduced to abstract and memorize object prototypes with informative details using high-quality features from previous frames. Extensive experiments are conducted to validate the effectiveness of our approach. While CamSAM2 only adds negligible learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the backbone. The code will be available at https://github.com/zhoustan/CamSAM2.
Abstract:The automated analysis of chemical literature holds promise to accelerate discovery in fields such as material science and drug development. In particular, search capabilities for chemical structures and Markush structures (chemical structure templates) within patent documents are valuable, e.g., for prior-art search. Advancements have been made in the automatic extraction of chemical structures from text and images, yet the Markush structures remain largely unexplored due to their complex multi-modal nature. In this work, we present MarkushGrapher, a multi-modal approach for recognizing Markush structures in documents. Our method jointly encodes text, image, and layout information through a Vision-Text-Layout encoder and an Optical Chemical Structure Recognition vision encoder. These representations are merged and used to auto-regressively generate a sequential graph representation of the Markush structure along with a table defining its variable groups. To overcome the lack of real-world training data, we propose a synthetic data generation pipeline that produces a wide range of realistic Markush structures. Additionally, we present M2S, the first annotated benchmark of real-world Markush structures, to advance research on this challenging task. Extensive experiments demonstrate that our approach outperforms state-of-the-art chemistry-specific and general-purpose vision-language models in most evaluation settings. Code, models, and datasets will be available.
Abstract:N:M structured pruning is essential for large language models (LLMs) because it can remove less important network weights and reduce the memory and computation requirements. Existing pruning methods mainly focus on designing metrics to measure the importance of network components to guide pruning. Apart from the impact of these metrics, we observe that different layers have different sensitivities over the network performance. Thus, we propose an efficient method based on the trace of Fisher Information Matrix (FIM) to quantitatively measure and verify the different sensitivities across layers. Based on this, we propose Mixed Sparsity Pruning (MSP) which uses a pruning-oriented evolutionary algorithm (EA) to determine the optimal sparsity levels for different layers. To guarantee fast convergence and achieve promising performance, we utilize efficient FIM-inspired layer-wise sensitivity to initialize the population of EA. In addition, our MSP can work as a plug-and-play module, ready to be integrated into existing pruning methods. Extensive experiments on LLaMA and LLaMA-2 on language modeling and zero-shot tasks demonstrate our superior performance. In particular, in extreme pruning ratio (e.g. 75%), our method significantly outperforms existing methods in terms of perplexity (PPL) by orders of magnitude (Figure 1).