Abstract:Audio-visual speech separation (AVSS) aims to extract a target speech signal from a mixed signal by leveraging both auditory and visual (lip movement) cues. However, most existing AVSS methods exhibit complex architectures and rely on future context, operating offline, which renders them unsuitable for real-time applications. Inspired by the pipeline of RTFSNet, we propose a novel streaming AVSS model, named Swift-Net, which enhances the causal processing capabilities required for real-time applications. Swift-Net adopts a lightweight visual feature extraction module and an efficient fusion module for audio-visual integration. Additionally, Swift-Net employs Grouped SRUs to integrate historical information across different feature spaces, thereby improving the utilization efficiency of historical information. We further propose a causal transformation template to facilitate the conversion of non-causal AVSS models into causal counterparts. Experiments on three standard benchmark datasets (LRS2, LRS3, and VoxCeleb2) demonstrated that under causal conditions, our proposed Swift-Net exhibited outstanding performance, highlighting the potential of this method for processing speech in complex environments.
Abstract:The systematic evaluation of speech separation and enhancement models under moving sound source conditions typically requires extensive data comprising diverse scenarios. However, real-world datasets often contain insufficient data to meet the training and evaluation requirements of models. Although synthetic datasets offer a larger volume of data, their acoustic simulations lack realism. Consequently, neither real-world nor synthetic datasets effectively fulfill practical needs. To address these issues, we introduce SonicSim, a synthetic toolkit de-designed to generate highly customizable data for moving sound sources. SonicSim is developed based on the embodied AI simulation platform, Habitat-sim, supporting multi-level adjustments, including scene-level, microphone-level, and source-level, thereby generating more diverse synthetic data. Leveraging SonicSim, we constructed a moving sound source benchmark dataset, SonicSet, using the Librispeech, the Freesound Dataset 50k (FSD50K) and Free Music Archive (FMA), and 90 scenes from the Matterport3D to evaluate speech separation and enhancement models. Additionally, to validate the differences between synthetic data and real-world data, we randomly selected 5 hours of raw data without reverberation from the SonicSet validation set to record a real-world speech separation dataset, which was then compared with the corresponding synthetic datasets. Similarly, we utilized the real-world speech enhancement dataset RealMAN to validate the acoustic gap between other synthetic datasets and the SonicSet dataset for speech enhancement. The results indicate that the synthetic data generated by SonicSim can effectively generalize to real-world scenarios. Demo and code are publicly available at https://cslikai.cn/SonicSim/.