University of Science and Technology of China
Abstract:This paper tackles the challenge of automatically performing realistic surgical simulations from readily available surgical videos. Recent efforts have successfully integrated physically grounded dynamics within 3D Gaussians to perform high-fidelity simulations in well-reconstructed simulation environments from static scenes. However, they struggle with the geometric inconsistency in reconstructing simulation environments and unrealistic physical deformations in simulations of soft tissues when it comes to dynamic and complex surgical processes. In this paper, we propose SurgiSim, a novel automatic simulation system to overcome these limitations. To build a surgical simulation environment, we maintain a canonical 3D scene composed of 3D Gaussians coupled with a deformation field to represent a dynamic surgical scene. This process involves a multi-stage optimization with trajectory and anisotropic regularization, enhancing the geometry consistency of the canonical scene, which serves as the simulation environment. To achieve realistic physical simulations in this environment, we implement a Visco-Elastic deformation model based on the Maxwell model, effectively restoring the complex deformations of tissues. Additionally, we infer the physical parameters of tissues by minimizing the discrepancies between the input video and simulation results guided by estimated tissue motion, ensuring realistic simulation outcomes. Experiments on various surgical scenarios and interactions demonstrate SurgiSim's ability to perform realistic simulation of soft tissues among surgical procedures, showing its enormous potential for enhancing surgical training, planning, and robotic surgery systems. The project page is at https://namaenashibot.github.io/SurgiSim/.
Abstract:Current passive deepfake face-swapping detection methods encounter significance bottlenecks in model generalization capabilities. Meanwhile, proactive detection methods often use fixed watermarks which lack a close relationship with the content they protect and are vulnerable to security risks. Dynamic watermarks based on facial features offer a promising solution, as these features provide unique identifiers. Therefore, this paper proposes a Facial Feature-based Proactive deepfake detection method (FaceProtect), which utilizes changes in facial characteristics during deepfake manipulation as a novel detection mechanism. We introduce a GAN-based One-way Dynamic Watermark Generating Mechanism (GODWGM) that uses 128-dimensional facial feature vectors as inputs. This method creates irreversible mappings from facial features to watermarks, enhancing protection against various reverse inference attacks. Additionally, we propose a Watermark-based Verification Strategy (WVS) that combines steganography with GODWGM, allowing simultaneous transmission of the benchmark watermark representing facial features within the image. Experimental results demonstrate that our proposed method maintains exceptional detection performance and exhibits high practicality on images altered by various deepfake techniques.
Abstract:Sequential reasoning in agent systems has been significantly advanced by large language models (LLMs), yet existing approaches face limitations. Reflection-driven reasoning relies solely on knowledge in pretrained models, limiting performance in novel scenarios, while experience-assisted reasoning often depends on external experiences and lacks clear principles for selecting representative experiences. We address these limitations by proposing CoPS (Cross-Task Experience Sharing), a generalizable algorithm that enhances sequential reasoning by cross-task experience sharing and selection. In detail, CoPS leverages agents' experiences on previous tasks, selecting distribution-matched experiences via a provable pessimism-based strategy to maximize utility while minimizing risks from distribution shifts. Extensive experimental results on benchmarks like Alfworld, Webshop, and HotPotQA demonstrate that CoPS consistently outperforms state-of-the-art baselines, with superior sample efficiency suitable for resource-constrained scenarios. Theoretically, we show that the performance of our algorithm depends on both the quality of the pretrained LLM and the matching between the agent's task-dependent trial distribution and that generated by the LLM. Our work bridges the gap between existing sequential reasoning paradigms and validates the effectiveness of leveraging cross-task experiences, shedding light on the potential to improve agents' generalization and adaptability across diverse tasks. Our codes are available at $\href{https://github.com/uclaml/COPS}{\text{https://github.com/uclaml/COPS}}$.
Abstract:Large-scale speech generation models have achieved impressive performance in the zero-shot voice clone tasks relying on large-scale datasets. However, exploring how to achieve zero-shot voice clone with small-scale datasets is also essential. This paper proposes SF-Speech, a novel state-of-the-art voice clone model based on ordinary differential equations and contextual learning. Unlike the previous works, SF-Speech employs a multi-stage generation strategy to obtain the coarse acoustic feature and utilizes this feature to straighten the curved reverse trajectories caused by training the ordinary differential equation model with flow matching. In addition, we find the difference between the local correlations of different types of acoustic features and demonstrate the potential role of 2D convolution in modeling mel-spectrogram features. After training with less than 1000 hours of speech, SF-Speech significantly outperforms those methods based on global speaker embedding or autoregressive large language models. In particular, SF-Speech also shows a significant advantage over VoiceBox, the best-performing ordinary differential equation model, in speech intelligibility (a relative decrease of 22.4\% on word error rate) and timbre similarity (a relative improvement of 5.6\% on cosine distance) at a similar scale of parameters, and even keep a slight advantage when the parameters of VoiceBox are tripled.
Abstract:The scarcity of high-quality and multi-task singing datasets significantly hinders the development of diverse controllable and personalized singing tasks, as existing singing datasets suffer from low quality, limited diversity of languages and singers, absence of multi-technique information and realistic music scores, and poor task suitability. To tackle these problems, we present GTSinger, a large global, multi-technique, free-to-use, high-quality singing corpus with realistic music scores, designed for all singing tasks, along with its benchmarks. Particularly, (1) we collect 80.59 hours of high-quality singing voices, forming the largest recorded singing dataset; (2) 20 professional singers across nine widely spoken languages offer diverse timbres and styles; (3) we provide controlled comparison and phoneme-level annotations of six commonly used singing techniques, helping technique modeling and control; (4) GTSinger offers realistic music scores, assisting real-world musical composition; (5) singing voices are accompanied by manual phoneme-to-audio alignments, global style labels, and 16.16 hours of paired speech for various singing tasks. Moreover, to facilitate the use of GTSinger, we conduct four benchmark experiments: technique-controllable singing voice synthesis, technique recognition, style transfer, and speech-to-singing conversion. The corpus and demos can be found at http://gtsinger.github.io. We provide the dataset and the code for processing data and conducting benchmarks at https://huggingface.co/datasets/GTSinger/GTSinger and https://github.com/GTSinger/GTSinger.
Abstract:Recent advancements in human avatar synthesis have utilized radiance fields to reconstruct photo-realistic animatable human avatars. However, both NeRFs-based and 3DGS-based methods struggle with maintaining 3D consistency and exhibit suboptimal detail reconstruction, especially with sparse inputs. To address this challenge, we propose CHASE, which introduces supervision from intrinsic 3D consistency across poses and 3D geometry contrastive learning, achieving performance comparable with sparse inputs to that with full inputs. Following previous work, we first integrate a skeleton-driven rigid deformation and a non-rigid cloth dynamics deformation to coordinate the movements of individual Gaussians during animation, reconstructing basic avatar with coarse 3D consistency. To improve 3D consistency under sparse inputs, we design Dynamic Avatar Adjustment(DAA) to adjust deformed Gaussians based on a selected similar pose/image from the dataset. Minimizing the difference between the image rendered by adjusted Gaussians and the image with the similar pose serves as an additional form of supervision for avatar. Furthermore, we propose a 3D geometry contrastive learning strategy to maintain the 3D global consistency of generated avatars. Though CHASE is designed for sparse inputs, it surprisingly outperforms current SOTA methods \textbf{in both full and sparse settings} on the ZJU-MoCap and H36M datasets, demonstrating that our CHASE successfully maintains avatar's 3D consistency, hence improving rendering quality.
Abstract:Reconstructing photo-realistic animatable human avatars from monocular videos remains challenging in computer vision and graphics. Recently, methods using 3D Gaussians to represent the human body have emerged, offering faster optimization and real-time rendering. However, due to ignoring the crucial role of human body semantic information which represents the intrinsic structure and connections within the human body, they fail to achieve fine-detail reconstruction of dynamic human avatars. To address this issue, we propose SG-GS, which uses semantics-embedded 3D Gaussians, skeleton-driven rigid deformation, and non-rigid cloth dynamics deformation to create photo-realistic animatable human avatars from monocular videos. We then design a Semantic Human-Body Annotator (SHA) which utilizes SMPL's semantic prior for efficient body part semantic labeling. The generated labels are used to guide the optimization of Gaussian semantic attributes. To address the limited receptive field of point-level MLPs for local features, we also propose a 3D network that integrates geometric and semantic associations for human avatar deformation. We further implement three key strategies to enhance the semantic accuracy of 3D Gaussians and rendering quality: semantic projection with 2D regularization, semantic-guided density regularization and semantic-aware regularization with neighborhood consistency. Extensive experiments demonstrate that SG-GS achieves state-of-the-art geometry and appearance reconstruction performance.
Abstract:Reciprocal recommender systems~(RRS), conducting bilateral recommendations between two involved parties, have gained increasing attention for enhancing matching efficiency. However, the majority of existing methods in the literature still reuse conventional ranking metrics to separately assess the performance on each side of the recommendation process. These methods overlook the fact that the ranking outcomes of both sides collectively influence the effectiveness of the RRS, neglecting the necessity of a more holistic evaluation and a capable systemic solution. In this paper, we systemically revisit the task of reciprocal recommendation, by introducing the new metrics, formulation, and method. Firstly, we propose five new evaluation metrics that comprehensively and accurately assess the performance of RRS from three distinct perspectives: overall coverage, bilateral stability, and balanced ranking. These metrics provide a more holistic understanding of the system's effectiveness and enable a comprehensive evaluation. Furthermore, we formulate the RRS from a causal perspective, formulating recommendations as bilateral interventions, which can better model the decoupled effects of potential influencing factors. By utilizing the potential outcome framework, we further develop a model-agnostic causal reciprocal recommendation method that considers the causal effects of recommendations. Additionally, we introduce a reranking strategy to maximize matching outcomes, as measured by the proposed metrics. Extensive experiments on two real-world datasets from recruitment and dating scenarios demonstrate the effectiveness of our proposed metrics and approach. The code and dataset are available at: https://github.com/RUCAIBox/CRRS.
Abstract:Recently, speech generation models have made significant progress by using large-scale training data. However, the research community struggle to produce highly spontaneous and human-like speech due to the lack of large-scale, diverse, and spontaneous speech data. This paper presents \textit{Emilia}, the first multilingual speech generation dataset from in-the-wild speech data, and Emilia-Pipe, the first open-source preprocessing pipeline designed to transform in-the-wild speech data into high-quality training data with annotations for speech generation. Emilia starts with over 101k hours of speech in six languages and features diverse speech with varied speaking styles. To facilitate the scale-up of Emilia, the open-source pipeline Emilia-Pipe can process one hour of raw speech data ready for model training in a few mins, which enables the research community to collaborate on large-scale speech generation research. Experimental results validate the effectiveness of Emilia. Demos are available at: https://emilia-dataset.github.io/Emilia-Demo-Page/.
Abstract:ERP-based EEG detection is gaining increasing attention in the field of brain-computer interfaces. However, due to the complexity of ERP signal components, their low signal-to-noise ratio, and significant inter-subject variability, cross-subject ERP signal detection has been challenging. The continuous advancement in deep learning has greatly contributed to addressing this issue. This brief proposes a contrastive learning training framework and an Inception module to extract multi-scale temporal and spatial features, representing the subject-invariant components of ERP signals. Specifically, a base encoder integrated with a linear Inception module and a nonlinear projector is used to project the raw data into latent space. By maximizing signal similarity under different targets, the inter-subject EEG signal differences in latent space are minimized. The extracted spatiotemporal features are then used for ERP target detection. The proposed algorithm achieved the best AUC performance in single-trial binary classification tasks on the P300 dataset and showed significant optimization in speller decoding tasks compared to existing algorithms.