University of Bristol
Abstract:We present SpatialMem, a memory-centric system that unifies 3D geometry, semantics, and language into a single, queryable representation. Starting from casually captured egocentric RGB video, SpatialMem reconstructs metrically scaled indoor environments, detects structural 3D anchors (walls, doors, windows) as the first-layer scaffold, and populates a hierarchical memory with open-vocabulary object nodes -- linking evidence patches, visual embeddings, and two-layer textual descriptions to 3D coordinates -- for compact storage and fast retrieval. This design enables interpretable reasoning over spatial relations (e.g., distance, direction, visibility) and supports downstream tasks such as language-guided navigation and object retrieval without specialized sensors. Experiments across three real-life indoor scenes demonstrate that SpatialMem maintains strong anchor-description-level navigation completion and hierarchical retrieval accuracy under increasing clutter and occlusion, offering an efficient and extensible framework for embodied spatial intelligence.
Abstract:Generative models for financial time series often create data that look realistic and even reproduce stylized facts such as fat tails or volatility clustering. However, these apparent successes break down under trading backtests: models like GANs or WGAN-GP frequently collapse, yielding extreme and unrealistic results that make the synthetic data unusable in practice. We identify the root cause in the neglect of financial asymmetry and rare tail events, which strongly affect market risk but are often overlooked by objectives focusing on distribution matching. To address this, we introduce the Stylized Facts Alignment GAN (SFAG), which converts key stylized facts into differentiable structural constraints and jointly optimizes them with adversarial loss. This multi-constraint design ensures that generated series remain aligned with market dynamics not only in plots but also in backtesting. Experiments on the Shanghai Composite Index (2004--2024) show that while baseline GANs produce unstable and implausible trading outcomes, SFAG generates synthetic data that preserve stylized facts and support robust momentum strategy performance. Our results highlight that structure-preserving objectives are essential to bridge the gap between superficial realism and practical usability in financial generative modeling.
Abstract:Despite recent advances in multimodal large language models (MLLMs), their ability to understand and interact with music remains limited. Music understanding requires grounded reasoning over symbolic scores and expressive performance audio, which general-purpose MLLMs often fail to handle due to insufficient perceptual grounding. We introduce MuseAgent, a music-centric multimodal agent that augments language models with structured symbolic representations derived from sheet music images and performance audio. By integrating optical music recognition and automatic music transcription modules, MuseAgent enables multi-step reasoning and interaction over fine-grained musical content. To systematically evaluate music understanding capabilities, we further propose MuseBench, a benchmark covering music theory reasoning, score interpretation, and performance-level analysis across text, image, and audio modalities. Experiments show that existing MLLMs perform poorly on these tasks, while MuseAgent achieves substantial improvements, highlighting the importance of structured multimodal grounding for interactive music understanding.
Abstract:Multimodal image registration between diffusion MRI (dMRI) and T1-weighted (T1w) MRI images is a critical step for aligning diffusion-weighted imaging (DWI) data with structural anatomical space. Traditional registration methods often struggle to ensure accuracy due to the large intensity differences between diffusion data and high-resolution anatomical structures. This paper proposes an unsupervised registration framework based on a generative registration network, which transforms the original multimodal registration problem between b0 and T1w images into a unimodal registration task between a generated image and the real T1w image. This effectively reduces the complexity of cross-modal registration. The framework first employs an image synthesis model to generate images with T1w-like contrast, and then learns a deformation field from the generated image to the fixed T1w image. The registration network jointly optimizes local structural similarity and cross-modal statistical dependency to improve deformation estimation accuracy. Experiments conducted on two independent datasets demonstrate that the proposed method outperforms several state-of-the-art approaches in multimodal registration tasks.
Abstract:Whole-brain parcellation from MRI is a critical yet challenging task due to the complexity of subdividing the brain into numerous small, irregular shaped regions. Traditionally, template-registration methods were used, but recent advances have shifted to deep learning for faster workflows. While large models like the Segment Anything Model (SAM) offer transferable feature representations, they are not tailored for the high precision required in brain parcellation. To address this, we propose BrainSegNet, a novel framework that adapts SAM for accurate whole-brain parcellation into 95 regions. We enhance SAM by integrating U-Net skip connections and specialized modules into its encoder and decoder, enabling fine-grained anatomical precision. Key components include a hybrid encoder combining U-Net skip connections with SAM's transformer blocks, a multi-scale attention decoder with pyramid pooling for varying-sized structures, and a boundary refinement module to sharpen edges. Experimental results on the Human Connectome Project (HCP) dataset demonstrate that BrainSegNet outperforms several state-of-the-art methods, achieving higher accuracy and robustness in complex, multi-label parcellation.
Abstract:Financial question answering (QA) over long corporate filings requires evidence to satisfy strict constraints on entities, financial metrics, fiscal periods, and numeric values. However, existing LLM-based rerankers primarily optimize semantic relevance, leading to unstable rankings and opaque decisions on long documents. We propose FinCards, a structured reranking framework that reframes financial evidence selection as constraint satisfaction under a finance-aware schema. FinCards represents filing chunks and questions using aligned schema fields (entities, metrics, periods, and numeric spans), enabling deterministic field-level matching. Evidence is selected via a multi-stage tournament reranking with stability-aware aggregation, producing auditable decision traces. Across two corporate filing QA benchmarks, FinCards substantially improves early-rank retrieval over both lexical and LLM-based reranking baselines, while reducing ranking variance, without requiring model fine-tuning or unpredictable inference budgets. Our code is available at https://github.com/XanderZhou2022/FINCARDS.
Abstract:Synthetic Aperture Radar (SAR) imaging results are highly sensitive to observation geometries and the geometric parameters of targets. However, existing generative methods primarily operate within the image domain, neglecting explicit geometric information. This limitation often leads to unsatisfactory generation quality and the inability to precisely control critical parameters such as azimuth angles. To address these challenges, we propose GeoDiff-SAR, a geometric prior guided diffusion model for high-fidelity SAR image generation. Specifically, GeoDiff-SAR first efficiently simulates the geometric structures and scattering relationships inherent in real SAR imaging by calculating SAR point clouds at specific azimuths, which serves as a robust physical guidance. Secondly, to effectively fuse multi-modal information, we employ a feature fusion gating network based on Feature-wise Linear Modulation (FiLM) to dynamically regulate the weight distribution of 3D physical information, image control parameters, and textual description parameters. Thirdly, we utilize the Low-Rank Adaptation (LoRA) architecture to perform lightweight fine-tuning on the advanced Stable Diffusion 3.5 (SD3.5) model, enabling it to rapidly adapt to the distribution characteristics of the SAR domain. To validate the effectiveness of GeoDiff-SAR, extensive comparative experiments were conducted on real-world SAR datasets. The results demonstrate that data generated by GeoDiff-SAR exhibits high fidelity and effectively enhances the accuracy of downstream classification tasks. In particular, it significantly improves recognition performance across different azimuth angles, thereby underscoring the superiority of physics-guided generation.
Abstract:We present MARVEL (https://ligogpt.mit.edu/marvel), a locally deployable, open-source framework for domain-aware question answering and assisted scientific research. It is designed to address the increasing demands of a digital assistant for scientific groups that can read highly technical data, cite precisely, and operate within authenticated networks. MARVEL combines a fast path for straightforward queries with a more deliberate DeepSearch mode that integrates retrieval-augmented generation and Monte Carlo Tree Search. It explores complementary subqueries, allocates more compute to promising branches, and maintains a global evidence ledger that preserves sources during drafting. We applied this framework in the context of gravitational-wave research related to the Laser Interferometer Gravitational-wave Observatory. Answers are grounded in a curated semantic index of research literature, doctoral theses, LIGO documents, and long-running detector electronic logbooks, with targeted web searches when appropriate. Because direct benchmarking against commercial LLMs cannot be performed on private data, we evaluated MARVEL on two publicly available surrogate datasets that capture comparable semantic and technical characteristics. On these benchmarks, MARVEL matches a GPT-4o mini baseline on literature-centric queries and substantially outperforms it on detector-operations content, where domain retrieval and guided reasoning are decisive. By making the complete framework and evaluation datasets openly available, we aim to provide a reproducible foundation for developing domain-specific scientific assistants.




Abstract:Comparing white matter (WM) connections between adults and neonates using diffusion MRI (dMRI) can advance our understanding of typical brain development and potential biomarkers for neurological disorders. However, existing WM atlases are population-specific (adult or neonatal) and reside in separate spaces, preventing direct cross-population comparisons. A unified WM atlas spanning both neonates and adults is still lacking. In this study, we propose a neonatal/adult brain atlas (NABA), a WM tractography atlas built from dMRI data of both neonates and adults. NABA is constructed using a robust, data-driven fiber clustering pipeline, enabling group-wise WM atlasing across populations despite substantial anatomical variability. The atlas provides a standardized template for WM parcellation, allowing direct comparison of WM tracts between neonates and adults. Using NABA, we conduct four analyses: (1) evaluating the feasibility of joint WM mapping across populations, (2) characterizing WM development across neonatal ages relative to adults, (3) assessing sex-related differences in neonatal WM development, and (4) examining the effects of preterm birth. Our results show that NABA robustly identifies WM tracts in both populations. We observe rapid fractional anisotropy (FA) development in long-range association tracts, including the arcuate fasciculus and superior longitudinal fasciculus II, whereas intra-cerebellar tracts develop more slowly. Neonatal females exhibit faster overall FA development than males. Although preterm neonates show lower overall FA development rates, they demonstrate relatively higher FA growth in specific tracts, including the corticospinal tract, corona radiata-pontine pathway, and intracerebellar tracts. These findings demonstrate that NABA is a useful tool for investigating WM development across neonates and adults.




Abstract:Understanding how automated grading systems evaluate essays remains a significant challenge for educators and students, especially when large language models function as black boxes. We introduce EssayCBM, a rubric-aligned framework that prioritizes interpretability in essay assessment. Instead of predicting grades directly from text, EssayCBM evaluates eight writing concepts, such as Thesis Clarity and Evidence Use, through dedicated prediction heads on an encoder. These concept scores form a transparent bottleneck, and a lightweight network computes the final grade using only concepts. Instructors can adjust concept predictions and instantly view the updated grade, enabling accountable human-in-the-loop evaluation. EssayCBM matches black-box performance while offering actionable, concept-level feedback through an intuitive web interface.