Alert button
Picture for Fan Zhang

Fan Zhang

Alert button

Accelerating Learnt Video Codecs with Gradient Decay and Layer-wise Distillation

Dec 05, 2023
Tianhao Peng, Ge Gao, Heming Sun, Fan Zhang, David Bull

In recent years, end-to-end learnt video codecs have demonstrated their potential to compete with conventional coding algorithms in term of compression efficiency. However, most learning-based video compression models are associated with high computational complexity and latency, in particular at the decoder side, which limits their deployment in practical applications. In this paper, we present a novel model-agnostic pruning scheme based on gradient decay and adaptive layer-wise distillation. Gradient decay enhances parameter exploration during sparsification whilst preventing runaway sparsity and is superior to the standard Straight-Through Estimation. The adaptive layer-wise distillation regulates the sparse training in various stages based on the distortion of intermediate features. This stage-wise design efficiently updates parameters with minimal computational overhead. The proposed approach has been applied to three popular end-to-end learnt video codecs, FVC, DCVC, and DCVC-HEM. Results confirm that our method yields up to 65% reduction in MACs and 2x speed-up with less than 0.3dB drop in BD-PSNR. Supporting code and supplementary material can be downloaded from:

Viaarxiv icon

How does spatial structure affect psychological restoration? A method based on Graph Neural Networks and Street View Imagery

Nov 30, 2023
Haoran Ma, Yan Zhang, Pengyuan Liu, Fan Zhang, Pengyu Zhu

The Attention Restoration Theory (ART) presents a theoretical framework with four essential indicators (being away, extent, fascinating, and compatibility) for comprehending urban and natural restoration quality. However, previous studies relied on non-sequential data and non-spatial dependent methods, which overlooks the impact of spatial structure defined here as the positional relationships between scene entities on restoration quality. The past methods also make it challenging to measure restoration quality on an urban scale. In this work, a spatial-dependent graph neural networks (GNNs) approach is proposed to reveal the relation between spatial structure and restoration quality on an urban scale. Specifically, we constructed two different types of graphs at the street and city levels. The street-level graphs, using sequential street view images (SVIs) of road segments to capture position relationships between entities, were used to represent spatial structure. The city-level graph, modeling the topological relationships of roads as non-Euclidean data structures and embedding urban features (including Perception-features, Spatial-features, and Socioeconomic-features), was used to measure restoration quality. The results demonstrate that: 1) spatial-dependent GNNs model outperforms traditional methods (Acc = 0.735, F1 = 0.732); 2) spatial structure portrayed through sequential SVIs data significantly influences restoration quality; 3) spaces with the same restoration quality exhibited distinct spatial structures patterns. This study clarifies the association between spatial structure and restoration quality, providing a new perspective to improve urban well-being in the future.

* 33 pages, 7 figures, Under review 
Viaarxiv icon

VBench: Comprehensive Benchmark Suite for Video Generative Models

Nov 29, 2023
Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin, Yu Qiao, Ziwei Liu

Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has three appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. We will open-source VBench, including all prompts, evaluation methods, generated videos, and human preference annotations, and also include more video generation models in VBench to drive forward the field of video generation.

* Equal contributions from first four authors. Project page: Code: 
Viaarxiv icon

A Novel Deep Clustering Framework for Fine-Scale Parcellation of Amygdala Using dMRI Tractography

Nov 25, 2023
Haolin He, Ce Zhu, Le Zhang, Yipeng Liu, Xiao Xu, Yuqian Chen, Leo Zekelman, Jarrett Rushmore, Yogesh Rathi, Nikos Makris, Lauren J. O'Donnell, Fan Zhang

The amygdala plays a vital role in emotional processing and exhibits structural diversity that necessitates fine-scale parcellation for a comprehensive understanding of its anatomico-functional correlations. Diffusion MRI tractography is an advanced imaging technique that can estimate the brain's white matter structural connectivity to potentially reveal the topography of the amygdala for studying its subdivisions. In this work, we present a deep clustering pipeline to perform automated, fine-scale parcellation of the amygdala using diffusion MRI tractography. First, we incorporate a newly proposed deep learning approach to enable accurate segmentation of the amygdala directly on the dMRI data. Next, we design a novel streamline clustering-based structural connectivity feature for a robust representation of voxels within the amygdala. Finally, we improve the popular joint dimensionality reduction and k-means clustering approach to enable amygdala parcellation at a finer scale. With the proposed method, we obtain nine unique amygdala parcels. Experiments show that these parcels can be consistently identified across subjects and have good correspondence to the widely used coarse-scale amygdala parcellation.

Viaarxiv icon

Cross-Domain Waveform Design for 6G Integrated Sensing and Communication

Nov 08, 2023
Fan Zhang, Tianqi Mao, Ruiqi Liu, Zhu Han, Octavia A. Dobre, Sheng Chen, Zhaocheng Wang

Orthogonal frequency division multiplexing (OFDM) is one of the representative integrated sensing and communication (ISAC) waveforms, where sensing and communications tend to be assigned with different resource elements (REs) due to their diverse design requirements. This motivates optimization of resource allocation/waveform design across time, frequency, power and delay-Doppler domains. Therefore, this article proposes two cross-domain waveform optimization strategies for OFDM-based ISAC systems, following communication-centric and sensing-centric criteria, respectively. For the communication-centric design, to maximize the achievable data rate, a fraction of REs are optimally allocated for communications according to prior knowledge of the communication channel. The remaining REs are then employed for sensing, where the sidelobe level and peak to average power ratio are suppressed by optimizing its power-frequency and phase-frequency characteristics. For the sensing-centric design, a `locally' perfect auto-correlation property is ensured by adjusting the unit cells of the ambiguity function within its region of interest (RoI). Afterwards, the irrelevant cells beyond RoI, which can readily determine the sensing power allocation, are optimized with the communication power allocation to enhance the achievable data rate. Numerical results demonstrate the superiority of the proposed communication-centric and sensing-centric waveform designs for ISAC applications.

Viaarxiv icon

CapsFusion: Rethinking Image-Text Data at Scale

Nov 02, 2023
Qiying Yu, Quan Sun, Xiaosong Zhang, Yufeng Cui, Fan Zhang, Yue Cao, Xinlong Wang, Jingjing Liu

Large multimodal models demonstrate remarkable generalist ability to perform diverse multimodal tasks in a zero-shot manner. Large-scale web-based image-text pairs contribute fundamentally to this success, but suffer from excessive noise. Recent studies use alternative captions synthesized by captioning models and have achieved notable benchmark performance. However, our experiments reveal significant Scalability Deficiency and World Knowledge Loss issues in models trained with synthetic captions, which have been largely obscured by their initial benchmark success. Upon closer examination, we identify the root cause as the overly-simplified language structure and lack of knowledge details in existing synthetic captions. To provide higher-quality and more scalable multimodal pretraining data, we propose CapsFusion, an advanced framework that leverages large language models to consolidate and refine information from both web-based image-text pairs and synthetic captions. Extensive experiments show that CapsFusion captions exhibit remarkable all-round superiority over existing captions in terms of model performance (e.g., 18.8 and 18.3 improvements in CIDEr score on COCO and NoCaps), sample efficiency (requiring 11-16 times less computation than baselines), world knowledge depth, and scalability. These effectiveness, efficiency and scalability advantages position CapsFusion as a promising candidate for future scaling of LMM training.

* Code & Dataset: 
Viaarxiv icon

Multi-task deep learning for large-scale building detail extraction from high-resolution satellite imagery

Oct 29, 2023
Zhen Qian, Min Chen, Zhuo Sun, Fan Zhang, Qingsong Xu, Jinzhao Guo, Zhiwei Xie, Zhixin Zhang

Understanding urban dynamics and promoting sustainable development requires comprehensive insights about buildings. While geospatial artificial intelligence has advanced the extraction of such details from Earth observational data, existing methods often suffer from computational inefficiencies and inconsistencies when compiling unified building-related datasets for practical applications. To bridge this gap, we introduce the Multi-task Building Refiner (MT-BR), an adaptable neural network tailored for simultaneous extraction of spatial and attributional building details from high-resolution satellite imagery, exemplified by building rooftops, urban functional types, and roof architectural types. Notably, MT-BR can be fine-tuned to incorporate additional building details, extending its applicability. For large-scale applications, we devise a novel spatial sampling scheme that strategically selects limited but representative image samples. This process optimizes both the spatial distribution of samples and the urban environmental characteristics they contain, thus enhancing extraction effectiveness while curtailing data preparation expenditures. We further enhance MT-BR's predictive performance and generalization capabilities through the integration of advanced augmentation techniques. Our quantitative results highlight the efficacy of the proposed methods. Specifically, networks trained with datasets curated via our sampling method demonstrate improved predictive accuracy relative to those using alternative sampling approaches, with no alterations to network architecture. Moreover, MT-BR consistently outperforms other state-of-the-art methods in extracting building details across various metrics. The real-world practicality is also demonstrated in an application across Shanghai, generating a unified dataset that encompasses both the spatial and attributional details of buildings.

Viaarxiv icon

Recent Methodological Advances in Federated Learning for Healthcare

Oct 04, 2023
Fan Zhang, Daniel Kreuter, Yichen Chen, Sören Dittmer, Samuel Tull, Tolou Shadbahr, BloodCounts! Collaboration, Jacobus Preller, James H. F. Rudd, John A. D. Aston, Carola-Bibiane Schönlieb, Nicholas Gleadall, Michael Roberts

Figure 1 for Recent Methodological Advances in Federated Learning for Healthcare
Figure 2 for Recent Methodological Advances in Federated Learning for Healthcare
Figure 3 for Recent Methodological Advances in Federated Learning for Healthcare
Figure 4 for Recent Methodological Advances in Federated Learning for Healthcare

For healthcare datasets, it is often not possible to combine data samples from multiple sites due to ethical, privacy or logistical concerns. Federated learning allows for the utilisation of powerful machine learning algorithms without requiring the pooling of data. Healthcare data has many simultaneous challenges which require new methodologies to address, such as highly-siloed data, class imbalance, missing data, distribution shifts and non-standardised variables. Federated learning adds significant methodological complexity to conventional centralised machine learning, requiring distributed optimisation, communication between nodes, aggregation of models and redistribution of models. In this systematic review, we consider all papers on Scopus that were published between January 2015 and February 2023 and which describe new federated learning methodologies for addressing challenges with healthcare data. We performed a detailed review of the 89 papers which fulfilled these criteria. Significant systemic issues were identified throughout the literature which compromise the methodologies in many of the papers reviewed. We give detailed recommendations to help improve the quality of the methodology development for federated learning in healthcare.

* Supplementary table of extracted data at the end of the document 
Viaarxiv icon

Neural-Singular-Hessian: Implicit Neural Representation of Unoriented Point Clouds by Enforcing Singular Hessian

Sep 06, 2023
Zixiong Wang, Yunxiao Zhang, Rui Xu, Fan Zhang, Pengshuai Wang, Shuangmin Chen, Shiqing Xin, Wenping Wang, Changhe Tu

Figure 1 for Neural-Singular-Hessian: Implicit Neural Representation of Unoriented Point Clouds by Enforcing Singular Hessian
Figure 2 for Neural-Singular-Hessian: Implicit Neural Representation of Unoriented Point Clouds by Enforcing Singular Hessian
Figure 3 for Neural-Singular-Hessian: Implicit Neural Representation of Unoriented Point Clouds by Enforcing Singular Hessian
Figure 4 for Neural-Singular-Hessian: Implicit Neural Representation of Unoriented Point Clouds by Enforcing Singular Hessian

Neural implicit representation is a promising approach for reconstructing surfaces from point clouds. Existing methods combine various regularization terms, such as the Eikonal and Laplacian energy terms, to enforce the learned neural function to possess the properties of a Signed Distance Function (SDF). However, inferring the actual topology and geometry of the underlying surface from poor-quality unoriented point clouds remains challenging. In accordance with Differential Geometry, the Hessian of the SDF is singular for points within the differential thin-shell space surrounding the surface. Our approach enforces the Hessian of the neural implicit function to have a zero determinant for points near the surface. This technique aligns the gradients for a near-surface point and its on-surface projection point, producing a rough but faithful shape within just a few iterations. By annealing the weight of the singular-Hessian term, our approach ultimately produces a high-fidelity reconstruction result. Extensive experimental results demonstrate that our approach effectively suppresses ghost geometry and recovers details from unoriented point clouds with better expressiveness than existing fitting-based methods.

Viaarxiv icon

Planning with Logical Graph-based Language Model for Instruction Generation

Aug 26, 2023
Fan Zhang, Kebing Jin, Hankz Hankui Zhuo

Figure 1 for Planning with Logical Graph-based Language Model for Instruction Generation
Figure 2 for Planning with Logical Graph-based Language Model for Instruction Generation
Figure 3 for Planning with Logical Graph-based Language Model for Instruction Generation
Figure 4 for Planning with Logical Graph-based Language Model for Instruction Generation

Despite the superior performance of large language models to generate natural language texts, it is hard to generate texts with correct logic according to a given task, due to the difficulties for neural models to capture implied rules from free-form texts. In this paper, we propose a novel graph-based language model, Logical-GLM, to infuse logic into language models for more valid text generation and interpretability. Specifically, we first capture information from natural language instructions and construct logical bayes graphs that generally describe domains. Next, we generate logical skeletons to guide language model training, infusing domain knowledge into language models. Finally, we alternately optimize the searching policy of graphs and language models until convergence. The experimental results show that Logical-GLM is both effective and efficient compared with traditional language models, despite using smaller-scale training data and fewer parameters. Our approach can generate instructional texts with more correct logic owing to the internalized domain knowledge. Moreover, the usage of logical graphs reflects the inner mechanism of the language models, which improves the interpretability of black-box models.

* 9 pages, 8 figures 
Viaarxiv icon