Abstract:This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025. The challenge aims to recover high-resolution (HR) images from low-resolution (LR) counterparts generated through bicubic downsampling with a $\times$4 scaling factor. The objective is to develop effective network designs or solutions that achieve state-of-the-art SR performance. To reflect the dual objectives of image SR research, the challenge includes two sub-tracks: (1) a restoration track, emphasizes pixel-wise accuracy and ranks submissions based on PSNR; (2) a perceptual track, focuses on visual realism and ranks results by a perceptual score. A total of 286 participants registered for the competition, with 25 teams submitting valid entries. This report summarizes the challenge design, datasets, evaluation protocol, the main results, and methods of each team. The challenge serves as a benchmark to advance the state of the art and foster progress in image SR.
Abstract:Homography estimation is a fundamental task in computer vision with applications in diverse fields. Recent advances in deep learning have improved homography estimation, particularly with unsupervised learning approaches, offering increased robustness and generalizability. However, accurately predicting homography, especially in complex motions, remains a challenge. In response, this work introduces a novel method leveraging video coding, particularly by harnessing inherent motion vectors (MVs) present in videos. We present CodingHomo, an unsupervised framework for homography estimation. Our framework features a Mask-Guided Fusion (MGF) module that identifies and utilizes beneficial features among the MVs, thereby enhancing the accuracy of homography prediction. Additionally, the Mask-Guided Homography Estimation (MGHE) module is presented for eliminating undesired features in the coarse-to-fine homography refinement process. CodingHomo outperforms existing state-of-the-art unsupervised methods, delivering good robustness and generalizability. The code and dataset are available at: \href{github}{https://github.com/liuyike422/CodingHomo
Abstract:While recent video deblurring methods have advanced significantly, they often overlook two valuable prior information: (1) motion vectors (MVs) and coding residuals (CRs) from video codecs, which provide efficient inter-frame alignment cues, and (2) the rich real-world knowledge embedded in pre-trained diffusion generative models. We present CPGDNet, a novel two-stage framework that effectively leverages both coding priors and generative diffusion priors for high-quality deblurring. First, our coding-prior feature propagation (CPFP) module utilizes MVs for efficient frame alignment and CRs to generate attention masks, addressing motion inaccuracies and texture variations. Second, a coding-prior controlled generation (CPC) module network integrates coding priors into a pretrained diffusion model, guiding it to enhance critical regions and synthesize realistic details. Experiments demonstrate our method achieves state-of-the-art perceptual quality with up to 30% improvement in IQA metrics. Both the code and the codingprior-augmented dataset will be open-sourced.
Abstract:This paper presents a comprehensive review of the NTIRE 2025 Challenge on Single-Image Efficient Super-Resolution (ESR). The challenge aimed to advance the development of deep models that optimize key computational metrics, i.e., runtime, parameters, and FLOPs, while achieving a PSNR of at least 26.90 dB on the $\operatorname{DIV2K\_LSDIR\_valid}$ dataset and 26.99 dB on the $\operatorname{DIV2K\_LSDIR\_test}$ dataset. A robust participation saw \textbf{244} registered entrants, with \textbf{43} teams submitting valid entries. This report meticulously analyzes these methods and results, emphasizing groundbreaking advancements in state-of-the-art single-image ESR techniques. The analysis highlights innovative approaches and establishes benchmarks for future research in the field.
Abstract:Blind video super-resolution (BVSR) is a low-level vision task which aims to generate high-resolution videos from low-resolution counterparts in unknown degradation scenarios. Existing approaches typically predict blur kernels that are spatially invariant in each video frame or even the entire video. These methods do not consider potential spatio-temporal varying degradations in videos, resulting in suboptimal BVSR performance. In this context, we propose a novel BVSR model based on Implicit Kernels, BVSR-IK, which constructs a multi-scale kernel dictionary parameterized by implicit neural representations. It also employs a newly designed recurrent Transformer to predict the coefficient weights for accurate filtering in both frame correction and feature alignment. Experimental results have demonstrated the effectiveness of the proposed BVSR-IK, when compared with four state-of-the-art BVSR models on three commonly used datasets, with BVSR-IK outperforming the second best approach, FMA-Net, by up to 0.59 dB in PSNR. Source code will be available at https://github.com.
Abstract:Compressed video super-resolution (SR) aims to generate high-resolution (HR) videos from the corresponding low-resolution (LR) compressed videos. Recently, some compressed video SR methods attempt to exploit the spatio-temporal information in the frequency domain, showing great promise in super-resolution performance. However, these methods do not differentiate various frequency subbands spatially or capture the temporal frequency dynamics, potentially leading to suboptimal results. In this paper, we propose a deep frequency-based compressed video SR model (FCVSR) consisting of a motion-guided adaptive alignment (MGAA) network and a multi-frequency feature refinement (MFFR) module. Additionally, a frequency-aware contrastive loss is proposed for training FCVSR, in order to reconstruct finer spatial details. The proposed model has been evaluated on three public compressed video super-resolution datasets, with results demonstrating its effectiveness when compared to existing works in terms of super-resolution performance (up to a 0.14dB gain in PSNR over the second-best model) and complexity.
Abstract:Robots can acquire complex manipulation skills by learning policies from expert demonstrations, which is often known as vision-based imitation learning. Generating policies based on diffusion and flow matching models has been shown to be effective, particularly in robotics manipulation tasks. However, recursion-based approaches are often inference inefficient in working from noise distributions to policy distributions, posing a challenging trade-off between efficiency and quality. This motivates us to propose FlowPolicy, a novel framework for fast policy generation based on consistency flow matching and 3D vision. Our approach refines the flow dynamics by normalizing the self-consistency of the velocity field, enabling the model to derive task execution policies in a single inference step. Specifically, FlowPolicy conditions on the observed 3D point cloud, where consistency flow matching directly defines straight-line flows from different time states to the same action space, while simultaneously constraining their velocity values, that is, we approximate the trajectories from noise to robot actions by normalizing the self-consistency of the velocity field within the action space, thus improving the inference efficiency. We validate the effectiveness of FlowPolicy on Adroit and Metaworld, demonstrating a 7$\times$ increase in inference speed while maintaining competitive average success rates compared to state-of-the-art policy models. Codes will be made publicly available.
Abstract:Fine-tuning advanced diffusion models for high-quality image stylization usually requires large training datasets and substantial computational resources, hindering their practical applicability. We propose Ada-Adapter, a novel framework for few-shot style personalization of diffusion models. Ada-Adapter leverages off-the-shelf diffusion models and pre-trained image feature encoders to learn a compact style representation from a limited set of source images. Our method enables efficient zero-shot style transfer utilizing a single reference image. Furthermore, with a small number of source images (three to five are sufficient) and a few minutes of fine-tuning, our method can capture intricate style details and conceptual characteristics, generating high-fidelity stylized images that align well with the provided text prompts. We demonstrate the effectiveness of our approach on various artistic styles, including flat art, 3D rendering, and logo design. Our experimental results show that Ada-Adapter outperforms existing zero-shot and few-shot stylization methods in terms of output quality, diversity, and training efficiency.
Abstract:We present RS-Diffusion, the first Diffusion Models-based method for single-frame Rolling Shutter (RS) correction. RS artifacts compromise visual quality of frames due to the row wise exposure of CMOS sensors. Most previous methods have focused on multi-frame approaches, using temporal information from consecutive frames for the motion rectification. However, few approaches address the more challenging but important single frame RS correction. In this work, we present an ``image-to-motion'' framework via diffusion techniques, with a designed patch-attention module. In addition, we present the RS-Real dataset, comprised of captured RS frames alongside their corresponding Global Shutter (GS) ground-truth pairs. The GS frames are corrected from the RS ones, guided by the corresponding Inertial Measurement Unit (IMU) gyroscope data acquired during capture. Experiments show that our RS-Diffusion surpasses previous single RS correction methods. Our method and proposed RS-Real dataset lay a solid foundation for advancing the field of RS correction.
Abstract:In this paper, we propose a temporal group alignment and fusion network to enhance the quality of compressed videos by using the long-short term correlations between frames. The proposed model consists of the intra-group feature alignment (IntraGFA) module, the inter-group feature fusion (InterGFF) module, and the feature enhancement (FE) module. We form the group of pictures (GoP) by selecting frames from the video according to their temporal distances to the target enhanced frame. With this grouping, the composed GoP can contain either long- or short-term correlated information of neighboring frames. We design the IntraGFA module to align the features of frames of each GoP to eliminate the motion existing between frames. We construct the InterGFF module to fuse features belonging to different GoPs and finally enhance the fused features with the FE module to generate high-quality video frames. The experimental results show that our proposed method achieves up to 0.05dB gain and lower complexity compared to the state-of-the-art method.