Abstract:Naturalistic fMRI encoding must handle multimodal inputs, shifting fusion styles, and pronounced inter-subject variability. We introduce AFIRE (Agnostic Framework for Multimodal fMRI Response Encoding), an agnostic interface that standardizes time-aligned post-fusion tokens from varied encoders, and MIND, a plug-and-play Mixture-of-Experts decoder with a subject-aware dynamic gating. Trained end-to-end for whole-brain prediction, AFIRE decouples the decoder from upstream fusion, while MIND combines token-dependent Top-K sparse routing with a subject prior to personalize expert usage without sacrificing generality. Experiments across multiple multimodal backbones and subjects show consistent improvements over strong baselines, enhanced cross-subject generalization, and interpretable expert patterns that correlate with content type. The framework offers a simple attachment point for new encoders and datasets, enabling robust, plug-and-improve performance for naturalistic neuroimaging studies.
Abstract:Existing rotation-invariant point cloud masked autoencoders (MAE) rely on random masking strategies that overlook geometric structure and semantic coherence. Random masking treats patches independently, failing to capture spatial relationships consistent across orientations and overlooking semantic object parts that maintain identity regardless of rotation. We propose a dual-stream masking approach combining 3D Spatial Grid Masking and Progressive Semantic Masking to address these fundamental limitations. Grid masking creates structured patterns through coordinate sorting to capture geometric relationships that persist across different orientations, while semantic masking uses attention-driven clustering to discover semantically meaningful parts and maintain their coherence during masking. These complementary streams are orchestrated via curriculum learning with dynamic weighting, progressing from geometric understanding to semantic discovery. Designed as plug-and-play components, our strategies integrate into existing rotation-invariant frameworks without architectural changes, ensuring broad compatibility across different approaches. Comprehensive experiments on ModelNet40, ScanObjectNN, and OmniObject3D demonstrate consistent improvements across various rotation scenarios, showing substantial performance gains over the baseline rotation-invariant methods.
Abstract:The significant morphological and distributional variability among subcellular components poses a long-standing challenge for learning-based organelle segmentation models, significantly increasing the risk of biased feature learning. Existing methods often rely on single mapping relationships, overlooking feature diversity and thereby inducing biased training. Although the Segment Anything Model (SAM) provides rich feature representations, its application to subcellular scenarios is hindered by two key challenges: (1) The variability in subcellular morphology and distribution creates gaps in the label space, leading the model to learn spurious or biased features. (2) SAM focuses on global contextual understanding and often ignores fine-grained spatial details, making it challenging to capture subtle structural alterations and cope with skewed data distributions. To address these challenges, we introduce ScSAM, a method that enhances feature robustness by fusing pre-trained SAM with Masked Autoencoder (MAE)-guided cellular prior knowledge to alleviate training bias from data imbalance. Specifically, we design a feature alignment and fusion module to align pre-trained embeddings to the same feature space and efficiently combine different representations. Moreover, we present a cosine similarity matrix-based class prompt encoder to activate class-specific features to recognize subcellular categories. Extensive experiments on diverse subcellular image datasets demonstrate that ScSAM outperforms state-of-the-art methods.
Abstract:In the realm of embodied intelligence, the evolution of large language models (LLMs) has markedly enhanced agent decision making. Consequently, researchers have begun exploring agent performance in dynamically changing high-risk scenarios, i.e., fire, flood, and wind scenarios in the HAZARD benchmark. Under these extreme conditions, the delay in decision making emerges as a crucial yet insufficiently studied issue. We propose a Time Conversion Mechanism (TCM) that translates inference delays in decision-making into equivalent simulation frames, thus aligning cognitive and physical costs under a single FPS-based metric. By extending HAZARD with Respond Latency (RL) and Latency-to-Action Ratio (LAR), we deliver a fully latency-aware evaluation protocol. Moreover, we present the Rapid-Reflex Async-Reflect Agent (RRARA), which couples a lightweight LLM-guided feedback module with a rule-based agent to enable immediate reactive behaviors and asynchronous reflective refinements in situ. Experiments on HAZARD show that RRARA substantially outperforms existing baselines in latency-sensitive scenarios.




Abstract:Diffusion MRI (dMRI) tractography enables in vivo mapping of brain structural connections, but traditional connectome generation is time-consuming and requires gray matter parcellation, posing challenges for large-scale studies. We introduce DeepMultiConnectome, a deep-learning model that predicts structural connectomes directly from tractography, bypassing the need for gray matter parcellation while supporting multiple parcellation schemes. Using a point-cloud-based neural network with multi-task learning, the model classifies streamlines according to their connected regions across two parcellation schemes, sharing a learned representation. We train and validate DeepMultiConnectome on tractography from the Human Connectome Project Young Adult dataset ($n = 1000$), labeled with an 84 and 164 region gray matter parcellation scheme. DeepMultiConnectome predicts multiple structural connectomes from a whole-brain tractogram containing 3 million streamlines in approximately 40 seconds. DeepMultiConnectome is evaluated by comparing predicted connectomes with traditional connectomes generated using the conventional method of labeling streamlines using a gray matter parcellation. The predicted connectomes are highly correlated with traditionally generated connectomes ($r = 0.992$ for an 84-region scheme; $r = 0.986$ for a 164-region scheme) and largely preserve network properties. A test-retest analysis of DeepMultiConnectome demonstrates reproducibility comparable to traditionally generated connectomes. The predicted connectomes perform similarly to traditionally generated connectomes in predicting age and cognitive function. Overall, DeepMultiConnectome provides a scalable, fast model for generating subject-specific connectomes across multiple parcellation schemes.
Abstract:Shape measures have emerged as promising descriptors of white matter tractography, offering complementary insights into anatomical variability and associations with cognitive and clinical phenotypes. However, conventional methods for computing shape measures are computationally expensive and time-consuming for large-scale datasets due to reliance on voxel-based representations. We propose Tract2Shape, a novel multimodal deep learning framework that leverages geometric (point cloud) and scalar (tabular) features to predict ten white matter tractography shape measures. To enhance model efficiency, we utilize a dimensionality reduction algorithm for the model to predict five primary shape components. The model is trained and evaluated on two independently acquired datasets, the HCP-YA dataset, and the PPMI dataset. We evaluate the performance of Tract2Shape by training and testing it on the HCP-YA dataset and comparing the results with state-of-the-art models. To further assess its robustness and generalization ability, we also test Tract2Shape on the unseen PPMI dataset. Tract2Shape outperforms SOTA deep learning models across all ten shape measures, achieving the highest average Pearson's r and the lowest nMSE on the HCP-YA dataset. The ablation study shows that both multimodal input and PCA contribute to performance gains. On the unseen testing PPMI dataset, Tract2Shape maintains a high Pearson's r and low nMSE, demonstrating strong generalizability in cross-dataset evaluation. Tract2Shape enables fast, accurate, and generalizable prediction of white matter shape measures from tractography data, supporting scalable analysis across datasets. This framework lays a promising foundation for future large-scale white matter shape analysis.
Abstract:The Contrastive Language-Image Pre-training (CLIP) framework has become a widely used approach for multimodal representation learning, particularly in image-text retrieval and clustering. However, its efficacy is constrained by three key limitations: (1) text token truncation, (2) isolated image-text encoding, and (3) deficient compositionality due to bag-of-words behavior. While recent Multimodal Large Language Models (MLLMs) have demonstrated significant advances in generalized vision-language understanding, their potential for learning transferable multimodal representations remains underexplored.In this work, we present UniME (Universal Multimodal Embedding), a novel two-stage framework that leverages MLLMs to learn discriminative representations for diverse downstream tasks. In the first stage, we perform textual discriminative knowledge distillation from a powerful LLM-based teacher model to enhance the embedding capability of the MLLM\'s language component. In the second stage, we introduce hard negative enhanced instruction tuning to further advance discriminative representation learning. Specifically, we initially mitigate false negative contamination and then sample multiple hard negatives per instance within each batch, forcing the model to focus on challenging samples. This approach not only improves discriminative power but also enhances instruction-following ability in downstream tasks. We conduct extensive experiments on the MMEB benchmark and multiple retrieval tasks, including short and long caption retrieval and compositional retrieval. Results demonstrate that UniME achieves consistent performance improvement across all tasks, exhibiting superior discriminative and compositional capabilities.
Abstract:Self-supervised learning (SSL) has demonstrated remarkable success in 3D point cloud analysis, particularly through masked autoencoders (MAEs). However, existing MAE-based methods lack rotation invariance, leading to significant performance degradation when processing arbitrarily rotated point clouds in real-world scenarios. To address this limitation, we introduce Handcrafted Feature-Based Rotation-Invariant Masked Autoencoder (HFBRI-MAE), a novel framework that refines the MAE design with rotation-invariant handcrafted features to ensure stable feature learning across different orientations. By leveraging both rotation-invariant local and global features for token embedding and position embedding, HFBRI-MAE effectively eliminates rotational dependencies while preserving rich geometric structures. Additionally, we redefine the reconstruction target to a canonically aligned version of the input, mitigating rotational ambiguities. Extensive experiments on ModelNet40, ScanObjectNN, and ShapeNetPart demonstrate that HFBRI-MAE consistently outperforms existing methods in object classification, segmentation, and few-shot learning, highlighting its robustness and strong generalization ability in real-world 3D applications.
Abstract:The intrapartum ultrasound guideline established by ISUOG highlights the Angle of Progression (AoP) and Head Symphysis Distance (HSD) as pivotal metrics for assessing fetal head descent and predicting delivery outcomes. Accurate measurement of the AoP and HSD requires a structured process. This begins with identifying standardized ultrasound planes, followed by the detection of specific anatomical landmarks within the regions of the pubic symphysis and fetal head that correlate with the delivery parameters AoP and HSD. Finally, these measurements are derived based on the identified anatomical landmarks. Addressing the clinical demands and standard operation process outlined in the ISUOG guideline, we introduce the Sequential Spatial-Temporal Network (SSTN), the first interpretable model specifically designed for the video of intrapartum ultrasound analysis. The SSTN operates by first identifying ultrasound planes, then segmenting anatomical structures such as the pubic symphysis and fetal head, and finally detecting key landmarks for precise measurement of HSD and AoP. Furthermore, the cohesive framework leverages task-related information to improve accuracy and reliability. Experimental evaluations on clinical datasets demonstrate that SSTN significantly surpasses existing models, reducing the mean absolute error by 18% for AoP and 22% for HSD.
Abstract:Existing vision-language models (VLMs) often suffer from visual hallucination, where the generated responses contain inaccuracies that are not grounded in the visual input. Efforts to address this issue without model finetuning primarily mitigate hallucination by reducing biases contrastively or amplifying the weights of visual embedding during decoding. However, these approaches improve visual perception at the cost of impairing the language reasoning capability. In this work, we propose the Perception Magnifier (PM), a novel visual decoding method that iteratively isolates relevant visual tokens based on attention and magnifies the corresponding regions, spurring the model to concentrate on fine-grained visual details during decoding. Specifically, by magnifying critical regions while preserving the structural and contextual information at each decoding step, PM allows the VLM to enhance its scrutiny of the visual input, hence producing more accurate and faithful responses. Extensive experimental results demonstrate that PM not only achieves superior hallucination mitigation but also enhances language generation while preserving strong reasoning capabilities.Code is available at https://github.com/ShunqiM/PM .