Abstract:Vision-to-audio (V2A) synthesis has broad applications in multimedia. Recent advancements of V2A methods have made it possible to generate relevant audios from inputs of videos or still images. However, the immersiveness and expressiveness of the generation are limited. One possible problem is that existing methods solely rely on the global scene and overlook details of local sounding objects (i.e., sound sources). To address this issue, we propose a Sound Source-Aware V2A (SSV2A) generator. SSV2A is able to locally perceive multimodal sound sources from a scene with visual detection and cross-modality translation. It then contrastively learns a Cross-Modal Sound Source (CMSS) Manifold to semantically disambiguate each source. Finally, we attentively mix their CMSS semantics into a rich audio representation, from which a pretrained audio generator outputs the sound. To model the CMSS manifold, we curate a novel single-sound-source visual-audio dataset VGGS3 from VGGSound. We also design a Sound Source Matching Score to measure localized audio relevance. This is to our knowledge the first work to address V2A generation at the sound-source level. Extensive experiments show that SSV2A surpasses state-of-the-art methods in both generation fidelity and relevance. We further demonstrate SSV2A's ability to achieve intuitive V2A control by compositing vision, text, and audio conditions. Our SSV2A generation can be tried and heard at https://ssv2a.github.io/SSV2A-demo .
Abstract:Cellular activities are dynamic and intricate, playing a crucial role in advancing diagnostic and therapeutic techniques, yet they often require substantial resources for accurate tracking. Despite recent progress, the conventional multi-stage cell tracking approaches not only heavily rely on detection or segmentation results as a prerequisite for the tracking stage, demanding plenty of refined segmentation masks, but are also deteriorated by imbalanced and long sequence data, leading to under-learning in training and missing cells in inference procedures. To alleviate the above issues, this paper proposes the novel end-to-end CAP framework, which leverages the idea of regarding Cell as Point to achieve efficient and stable cell tracking in one stage. CAP abandons detection or segmentation stages and simplifies the process by exploiting the correlation among the trajectories of cell points to track cells jointly, thus reducing the label demand and complexity of the pipeline. With cell point trajectory and visibility to represent cell locations and lineage relationships, CAP leverages the key innovations of adaptive event-guided (AEG) sampling for addressing data imbalance in cell division events and the rolling-as-window (RAW) inference method to ensure continuous tracking of new cells in the long term. Eliminating the need for a prerequisite detection or segmentation stage, CAP demonstrates strong cell tracking performance while also being 10 to 55 times more efficient than existing methods. The code and models will be released.
Abstract:The objective of Radiology Report Generation (RRG) is to automatically generate coherent textual analyses of diseases based on radiological images, thereby alleviating the workload of radiologists. Current AI-based methods for RRG primarily focus on modifications to the encoder-decoder model architecture. To advance these approaches, this paper introduces an Organ-Regional Information Driven (ORID) framework which can effectively integrate multi-modal information and reduce the influence of noise from unrelated organs. Specifically, based on the LLaVA-Med, we first construct an RRG-related instruction dataset to improve organ-regional diagnosis description ability and get the LLaVA-Med-RRG. After that, we propose an organ-based cross-modal fusion module to effectively combine the information from the organ-regional diagnosis description and radiology image. To further reduce the influence of noise from unrelated organs on the radiology report generation, we introduce an organ importance coefficient analysis module, which leverages Graph Neural Network (GNN) to examine the interconnections of the cross-modal information of each organ region. Extensive experiments an1d comparisons with state-of-the-art methods across various evaluation metrics demonstrate the superior performance of our proposed method.
Abstract:Surgical instrument segmentation (SIS) is pivotal for robotic-assisted minimally invasive surgery, assisting surgeons by identifying surgical instruments in endoscopic video frames. Recent unsupervised surgical instrument segmentation (USIS) methods primarily rely on pseudo-labels derived from low-level features such as color and optical flow, but these methods show limited effectiveness and generalizability in complex and unseen endoscopic scenarios. In this work, we propose a label-free unsupervised model featuring a novel module named Multi-View Normalized Cutter (m-NCutter). Different from previous USIS works, our model is trained using a graph-cutting loss function that leverages patch affinities for supervision, eliminating the need for pseudo-labels. The framework adaptively determines which affinities from which levels should be prioritized. Therefore, the low- and high-level features and their affinities are effectively integrated to train a label-free unsupervised model, showing superior effectiveness and generalization ability. We conduct comprehensive experiments across multiple SIS datasets to validate our approach's state-of-the-art (SOTA) performance, robustness, and exceptional potential as a pre-trained model. Our code is released at https://github.com/MingyuShengSMY/AMNCutter.
Abstract:Reconstructing neuron morphology from 3D light microscope imaging data is critical to aid neuroscientists in analyzing brain networks and neuroanatomy. With the boost from deep learning techniques, a variety of learning-based segmentation models have been developed to enhance the signal-to-noise ratio of raw neuron images as a pre-processing step in the reconstruction workflow. However, most existing models directly encode the latent representative features of volumetric neuron data but neglect their intrinsic morphological knowledge. To address this limitation, we design a novel framework that distills the prior knowledge from a 2D Vision Transformer pre-trained on extensive 2D natural images to facilitate neuronal morphological learning of our 3D Vision Transformer. To bridge the knowledge gap between the 2D natural image and 3D microscopic morphologic domains, we propose a deformable tubular transferring strategy that adapts the pre-trained 2D natural knowledge to the inherent tubular characteristics of neuronal structure in the latent embedding space. The experimental results on the Janelia dataset of the BigNeuron project demonstrate that our method achieves a segmentation performance improvement of 4.53% in mean Dice and 3.56% in mean 95% Hausdorff distance.
Abstract:Brain imaging studies have demonstrated that diffusion MRI tractography geometric shape descriptors can inform the study of the brain's white matter pathways and their relationship to brain function. In this work, we investigate the possibility of utilizing a deep learning model to compute shape measures of the brain's white matter connections. We introduce a novel framework, TractShapeNet, that leverages a point cloud representation of tractography to compute five shape measures: length, span, volume, total surface area, and irregularity. We assess the performance of the method on a large dataset including 1065 healthy young adults. Experiments for shape measure computation demonstrate that our proposed TractShapeNet outperforms other point cloud-based neural network models in both the Pearson correlation coefficient and normalized error metrics. We compare the inference runtime results with the conventional shape computation tool DSI-Studio. Our results demonstrate that a deep learning approach enables faster and more efficient shape measure computation. We also conduct experiments on two downstream language cognition prediction tasks, showing that shape measures from TractShapeNet perform similarly to those computed by DSI-Studio. Our code will be available at: https://github.com/SlicerDMRI/TractShapeNet.
Abstract:In contrast to the well-established technique of rasterization, vectorization of images poses a significant challenge in the field of computer graphics. Recent learning-based methods for converting raster images to vector formats frequently suffer from incomplete shapes, redundant path prediction, and a lack of accuracy in preserving the semantics of the original content. These shortcomings severely hinder the utility of these methods for further editing and manipulation of images. To address these challenges, we present DeepIcon, a novel hierarchical image vectorization network specifically tailored for generating variable-length icon vector graphics based on the raster image input. Our experimental results indicate that DeepIcon can efficiently produce Scalable Vector Graphics (SVGs) directly from raster images, bypassing the need for a differentiable rasterizer while also demonstrating a profound understanding of the image contents.
Abstract:Creating and understanding art has long been a hallmark of human ability. When presented with finished digital artwork, professional graphic artists can intuitively deconstruct and replicate it using various drawing tools, such as the line tool, paint bucket, and layer features, including opacity and blending modes. While most recent research in this field has focused on art generation, proposing a range of methods, these often rely on the concept of artwork being represented as a final image. To bridge the gap between pixel-level results and the actual drawing process, we present an approach that treats a set of drawing tools as executable programs. This method predicts a sequence of steps to achieve the final image, allowing for understandable and resolution-independent reproductions under the usage of a set of drawing commands. Our experiments demonstrate that our program synthesizer, Art2Prog, can comprehensively understand complex input images and reproduce them using high-quality executable programs. The experimental results evidence the potential of machines to grasp higher-level information from images and generate compact program-level descriptions.
Abstract:The shape of the brain's white matter connections is relatively unexplored in diffusion MRI tractography analysis. While it is known that tract shape varies in populations and across the human lifespan, it is unknown if the variability in dMRI tractography-derived shape may relate to the brain's functional variability across individuals. This work explores the potential of leveraging tractography fiber cluster shape measures to predict subject-specific cognitive performance. We implement machine learning models to predict individual cognitive performance scores. We study a large-scale database from the HCP-YA study. We apply an atlas-based fiber cluster parcellation to the dMRI tractography of each individual. We compute 15 shape, microstructure, and connectivity features for each fiber cluster. Using these features as input, we train a total of 210 models to predict 7 different NIH Toolbox cognitive performance assessments. We apply an explainable AI technique, SHAP, to assess the importance of each fiber cluster for prediction. Our results demonstrate that shape measures are predictive of individual cognitive performance. The studied shape measures, such as irregularity, diameter, total surface area, volume, and branch volume, are as effective for prediction as microstructure and connectivity measures. The overall best-performing feature is a shape feature, irregularity, which describes how different a cluster's shape is from an idealized cylinder. Further interpretation using SHAP values suggest that fiber clusters with features highly predictive of cognitive ability are widespread throughout the brain, including fiber clusters from the superficial association, deep association, cerebellar, striatal, and projection pathways. This study demonstrates the strong potential of shape descriptors to enhance the study of the brain's white matter and its relationship to cognitive function.
Abstract:Diffusion magnetic resonance imaging (dMRI) is a crucial technique in neuroimaging studies, allowing for the non-invasive probing of the underlying structures of brain tissues. Clinical dMRI data is susceptible to various artifacts during acquisition, which can lead to unreliable subsequent analyses. Therefore, dMRI preprocessing is essential for improving image quality, and manual inspection is often required to ensure that the preprocessed data is sufficiently corrected. However, manual inspection requires expertise and is time-consuming, especially with large-scale dMRI datasets. Given these challenges, an automated dMRI artifact detection tool is necessary to increase the productivity and reliability of dMRI data analysis. To this end, we propose a novel unsupervised deep learning framework called $\textbf{U}$nsupervised $\textbf{d}$MRI $\textbf{A}$rtifact $\textbf{D}$etection via $\textbf{A}$ngular Resolution Enhancement and $\textbf{C}$ycle Consistency Learning (UdAD-AC). UdAD-AC leverages dMRI angular resolution enhancement and cycle consistency learning to capture the effective representation of artifact-free dMRI data during training, and it identifies data containing artifacts using designed confidence score during inference. To assess the capability of UdAD-AC, several commonly reported dMRI artifacts, including bias field, susceptibility distortion, and corrupted volume, were added to the testing data. Experimental results demonstrate that UdAD-AC achieves the best performance compared to competitive methods in unsupervised dMRI artifact detection.