Abstract:Referring Video Object Segmentation (RVOS) aims to segment out the object in a video referred by an expression. Current RVOS methods view referring expressions as unstructured sequences, neglecting their crucial semantic structure essential for referent reasoning. Besides, in contrast to image-referring expressions whose semantics focus only on object attributes and object-object relations, video-referring expressions also encompass event attributes and event-event temporal relations. This complexity challenges traditional structured reasoning image approaches. In this paper, we propose the Event Referential Reasoning (EventRR) framework. EventRR decouples RVOS into object summarization part and referent reasoning part. The summarization phase begins by summarizing each frame into a set of bottleneck tokens, which are then efficiently aggregated in the video-level summarization step to exchange the global cross-modal temporal context. For reasoning part, EventRR extracts semantic eventful structure of a video-referring expression into highly expressive Referential Event Graph (REG), which is a single-rooted directed acyclic graph. Guided by topological traversal of REG, we propose Temporal Concept-Role Reasoning (TCRR) to accumulate the referring score of each temporal query from REG leaf nodes to root node. Each reasoning step can be interpreted as a question-answer pair derived from the concept-role relations in REG. Extensive experiments across four widely recognized benchmark datasets, show that EventRR quantitatively and qualitatively outperforms state-of-the-art RVOS methods. Code is available at https://github.com/bio-mlhui/EventRR
Abstract:Current facial emotion recognition systems are predominately trained to predict a fixed set of predefined categories or abstract dimensional values. This constrained form of supervision hinders generalization and applicability, as it reduces the rich and nuanced spectrum of emotions into oversimplified labels or scales. In contrast, natural language provides a more flexible, expressive, and interpretable way to represent emotions, offering a much broader source of supervision. Yet, leveraging semantically rich natural language captions as supervisory signals for facial emotion representation learning remains relatively underexplored, primarily due to two key challenges: 1) the lack of large-scale caption datasets with rich emotional semantics, and 2) the absence of effective frameworks tailored to harness such rich supervision. To this end, we introduce EmoCap100K, a large-scale facial emotion caption dataset comprising over 100,000 samples, featuring rich and structured semantic descriptions that capture both global affective states and fine-grained local facial behaviors. Building upon this dataset, we further propose EmoCapCLIP, which incorporates a joint global-local contrastive learning framework enhanced by a cross-modal guided positive mining module. This design facilitates the comprehensive exploitation of multi-level caption information while accommodating semantic similarities between closely related expressions. Extensive evaluations on over 20 benchmarks covering five tasks demonstrate the superior performance of our method, highlighting the promise of learning facial emotion representations from large-scale semantically rich captions. The code and data will be available at https://github.com/sunlicai/EmoCapCLIP.
Abstract:Pansharpening aims to fuse high-resolution panchromatic (PAN) images with low-resolution multispectral (LRMS) images to generate high-resolution multispectral (HRMS) images. Although deep learning-based methods have achieved promising performance, they generally suffer from severe performance degradation when applied to data from unseen sensors. Adapting these models through full-scale retraining or designing more complex architectures is often prohibitively expensive and impractical for real-world deployment. To address this critical challenge, we propose a fast and general-purpose framework for cross-sensor adaptation, SWIFT (Sensitive Weight Identification for Fast Transfer). Specifically, SWIFT employs an unsupervised sampling strategy based on data manifold structures to balance sample selection while mitigating the bias of traditional Farthest Point Sampling, efficiently selecting only 3\% of the most informative samples from the target domain. This subset is then used to probe a source-domain pre-trained model by analyzing the gradient behavior of its parameters, allowing for the quick identification and subsequent update of only the weight subset most sensitive to the domain shift. As a plug-and-play framework, SWIFT can be applied to various existing pansharpening models. Extensive experiments demonstrate that SWIFT reduces the adaptation time from hours to approximately one minute on a single NVIDIA RTX 4090 GPU. The adapted models not only substantially outperform direct-transfer baselines but also achieve performance competitive with, and in some cases superior to, full retraining, establishing a new state-of-the-art on cross-sensor pansharpening tasks for the WorldView-2 and QuickBird datasets.
Abstract:Generating aesthetic posters is more challenging than simple design images: it requires not only precise text rendering but also the seamless integration of abstract artistic content, striking layouts, and overall stylistic harmony. To address this, we propose PosterCraft, a unified framework that abandons prior modular pipelines and rigid, predefined layouts, allowing the model to freely explore coherent, visually compelling compositions. PosterCraft employs a carefully designed, cascaded workflow to optimize the generation of high-aesthetic posters: (i) large-scale text-rendering optimization on our newly introduced Text-Render-2M dataset; (ii) region-aware supervised fine-tuning on HQ-Poster100K; (iii) aesthetic-text-reinforcement learning via best-of-n preference optimization; and (iv) joint vision-language feedback refinement. Each stage is supported by a fully automated data-construction pipeline tailored to its specific needs, enabling robust training without complex architectural modifications. Evaluated on multiple experiments, PosterCraft significantly outperforms open-source baselines in rendering accuracy, layout coherence, and overall visual appeal-approaching the quality of SOTA commercial systems. Our code, models, and datasets can be found in the Project page: https://ephemeral182.github.io/PosterCraft
Abstract:Troubleshooting performance problems of large model training (LMT) is immensely challenging, due to unprecedented scales of modern GPU clusters, the complexity of software-hardware interactions, and the data intensity of the training process. Existing troubleshooting approaches designed for traditional distributed systems or datacenter networks fall short and can hardly apply to real-world training systems. In this paper, we present PerfTracker, the first online troubleshooting system utilizing fine-grained profiling, to diagnose performance issues of large-scale model training in production. PerfTracker can diagnose performance issues rooted in both hardware (e.g., GPUs and their interconnects) and software (e.g., Python functions and GPU operations). It scales to LMT on modern GPU clusters. PerfTracker effectively summarizes runtime behavior patterns of fine-grained LMT functions via online profiling, and leverages differential observability to localize the root cause with minimal production impact. PerfTracker has been deployed as a production service for large-scale GPU clusters of O(10, 000) GPUs (product homepage https://help.aliyun.com/zh/pai/user-guide/perftracker-online-performance-analysis-diagnostic-tool). It has been used to diagnose a variety of difficult performance issues.
Abstract:Photo retouching is integral to photographic art, extending far beyond simple technical fixes to heighten emotional expression and narrative depth. While artists leverage expertise to create unique visual effects through deliberate adjustments, non-professional users often rely on automated tools that produce visually pleasing results but lack interpretative depth and interactive transparency. In this paper, we introduce PhotoArtAgent, an intelligent system that combines Vision-Language Models (VLMs) with advanced natural language reasoning to emulate the creative process of a professional artist. The agent performs explicit artistic analysis, plans retouching strategies, and outputs precise parameters to Lightroom through an API. It then evaluates the resulting images and iteratively refines them until the desired artistic vision is achieved. Throughout this process, PhotoArtAgent provides transparent, text-based explanations of its creative rationale, fostering meaningful interaction and user control. Experimental results show that PhotoArtAgent not only surpasses existing automated tools in user studies but also achieves results comparable to those of professional human artists.
Abstract:Visual presentations are vital for effective communication. Early attempts to automate their creation using deep learning often faced issues such as poorly organized layouts, inaccurate text summarization, and a lack of image understanding, leading to mismatched visuals and text. These limitations restrict their application in formal contexts like business and scientific research. To address these challenges, we propose PreGenie, an agentic and modular framework powered by multimodal large language models (MLLMs) for generating high-quality visual presentations. PreGenie is built on the Slidev presentation framework, where slides are rendered from Markdown code. It operates in two stages: (1) Analysis and Initial Generation, which summarizes multimodal input and generates initial code, and (2) Review and Re-generation, which iteratively reviews intermediate code and rendered slides to produce final, high-quality presentations. Each stage leverages multiple MLLMs that collaborate and share information. Comprehensive experiments demonstrate that PreGenie excels in multimodal understanding, outperforming existing models in both aesthetics and content consistency, while aligning more closely with human design preferences.
Abstract:Face reenactment and portrait relighting are essential tasks in portrait editing, yet they are typically addressed independently, without much synergy. Most face reenactment methods prioritize motion control and multiview consistency, while portrait relighting focuses on adjusting shading effects. To take advantage of both geometric consistency and illumination awareness, we introduce Total-Editing, a unified portrait editing framework that enables precise control over appearance, motion, and lighting. Specifically, we design a neural radiance field decoder with intrinsic decomposition capabilities. This allows seamless integration of lighting information from portrait images or HDR environment maps into synthesized portraits. We also incorporate a moving least squares based deformation field to enhance the spatiotemporal coherence of avatar motion and shading effects. With these innovations, our unified framework significantly improves the quality and realism of portrait editing results. Further, the multi-source nature of Total-Editing supports more flexible applications, such as illumination transfer from one portrait to another, or portrait animation with customized backgrounds.
Abstract:Representation learning, a task of learning latent vectors to represent entities, is a key task in improving search and recommender systems in web applications. Various representation learning methods have been developed, including graph-based approaches for relationships among entities, sequence-based methods for capturing the temporal evolution of user activities, and content-based models for leveraging text and visual content. However, the development of a unifying framework that integrates these diverse techniques to support multiple applications remains a significant challenge. This paper presents OmniSage, a large-scale representation framework that learns universal representations for a variety of applications at Pinterest. OmniSage integrates graph neural networks with content-based models and user sequence models by employing multiple contrastive learning tasks to effectively process graph data, user sequence data, and content signals. To support the training and inference of OmniSage, we developed an efficient infrastructure capable of supporting Pinterest graphs with billions of nodes. The universal representations generated by OmniSage have significantly enhanced user experiences on Pinterest, leading to an approximate 2.5% increase in sitewide repins (saves) across five applications. This paper highlights the impact of unifying representation learning methods, and we will open source the OmniSage code by the time of publication.
Abstract:Artificial intelligence (AI) shows remarkable potential in medical imaging diagnostics, but current models typically require retraining when deployed across different clinical centers, limiting their widespread adoption. We introduce GlobeReady, a clinician-friendly AI platform that enables ocular disease diagnosis without retraining/fine-tuning or technical expertise. GlobeReady achieves high accuracy across imaging modalities: 93.9-98.5% for an 11-category fundus photo dataset and 87.2-92.7% for a 15-category OCT dataset. Through training-free local feature augmentation, it addresses domain shifts across centers and populations, reaching an average accuracy of 88.9% across five centers in China, 86.3% in Vietnam, and 90.2% in the UK. The built-in confidence-quantifiable diagnostic approach further boosted accuracy to 94.9-99.4% (fundus) and 88.2-96.2% (OCT), while identifying out-of-distribution cases at 86.3% (49 CFP categories) and 90.6% (13 OCT categories). Clinicians from multiple countries rated GlobeReady highly (average 4.6 out of 5) for its usability and clinical relevance. These results demonstrate GlobeReady's robust, scalable diagnostic capability and potential to support ophthalmic care without technical barriers.