Abstract:Mathematical reasoning remains challenging for LLMs due to complex logic and the need for precise computation. Existing methods enhance LLM reasoning by synthesizing datasets through problem rephrasing, but face issues with generation quality and problem complexity. To address this, we propose to extract structural information with generated problem-solving code from mathematical reasoning and guide data generation with structured solutions. Applied to MATH and GSM8K, our approach produces 39K problems with labeled intermediate steps and a 6.1K-problem benchmark of higher difficulty. Results on our benchmark show that model performance declines as reasoning length increases. Additionally, we conducted fine-tuning experiments using the proposed training data on a range of LLMs, and the results validate the effectiveness of our dataset. We hope the proposed method and dataset will contribute to future research in enhancing LLM reasoning capabilities.
Abstract:Graph Transformers (GTs) have recently demonstrated remarkable performance across diverse domains. By leveraging attention mechanisms, GTs are capable of modeling long-range dependencies and complex structural relationships beyond local neighborhoods. However, their applicable scenarios are still underexplored, this highlights the need to identify when and why they excel. Furthermore, unlike GNNs, which predominantly rely on message-passing mechanisms, GTs exhibit a diverse design space in areas such as positional encoding, attention mechanisms, and graph-specific adaptations. Yet, it remains unclear which of these design choices are truly effective and under what conditions. As a result, the community currently lacks a comprehensive benchmark and library to promote a deeper understanding and further development of GTs. To address this gap, this paper introduces OpenGT, a comprehensive benchmark for Graph Transformers. OpenGT enables fair comparisons and multidimensional analysis by establishing standardized experimental settings and incorporating a broad selection of state-of-the-art GNNs and GTs. Our benchmark evaluates GTs from multiple perspectives, encompassing diverse tasks and datasets with varying properties. Through extensive experiments, our benchmark has uncovered several critical insights, including the difficulty of transferring models across task levels, the limitations of local attention, the efficiency trade-offs in several models, the application scenarios of specific positional encodings, and the preprocessing overhead of some positional encodings. We aspire for this work to establish a foundation for future graph transformer research emphasizing fairness, reproducibility, and generalizability. We have developed an easy-to-use library OpenGT for training and evaluating existing GTs. The benchmark code is available at https://github.com/eaglelab-zju/OpenGT.
Abstract:Visual presentations are vital for effective communication. Early attempts to automate their creation using deep learning often faced issues such as poorly organized layouts, inaccurate text summarization, and a lack of image understanding, leading to mismatched visuals and text. These limitations restrict their application in formal contexts like business and scientific research. To address these challenges, we propose PreGenie, an agentic and modular framework powered by multimodal large language models (MLLMs) for generating high-quality visual presentations. PreGenie is built on the Slidev presentation framework, where slides are rendered from Markdown code. It operates in two stages: (1) Analysis and Initial Generation, which summarizes multimodal input and generates initial code, and (2) Review and Re-generation, which iteratively reviews intermediate code and rendered slides to produce final, high-quality presentations. Each stage leverages multiple MLLMs that collaborate and share information. Comprehensive experiments demonstrate that PreGenie excels in multimodal understanding, outperforming existing models in both aesthetics and content consistency, while aligning more closely with human design preferences.
Abstract:Consciousness stands as one of the most profound and distinguishing features of the human mind, fundamentally shaping our understanding of existence and agency. As large language models (LLMs) develop at an unprecedented pace, questions concerning intelligence and consciousness have become increasingly significant. However, discourse on LLM consciousness remains largely unexplored territory. In this paper, we first clarify frequently conflated terminologies (e.g., LLM consciousness and LLM awareness). Then, we systematically organize and synthesize existing research on LLM consciousness from both theoretical and empirical perspectives. Furthermore, we highlight potential frontier risks that conscious LLMs might introduce. Finally, we discuss current challenges and outline future directions in this emerging field. The references discussed in this paper are organized at https://github.com/OpenCausaLab/Awesome-LLM-Consciousness.
Abstract:Sense of touch that allows robots to detect contact and measure interaction forces enables them to perform challenging tasks such as grasping fragile objects or using tools. Tactile sensors in theory can equip the robots with such capabilities. However, accuracy of the measured forces is not on a par with those of the force sensors due to the potential calibration challenges and noise. This has limited the values these sensors can offer in manipulation applications that require force control. In this paper, we introduce GeoDEx, a unified estimation, planning, and control framework using geometric primitives such as plane, cone and ellipsoid, which enables dexterous as well as extrinsic manipulation in the presence of uncertain force readings. Through various experimental results, we show that while relying on direct inaccurate and noisy force readings from tactile sensors results in unstable or failed manipulation, our method enables successful grasping and extrinsic manipulation of different objects. Additionally, compared to directly running optimization using SOCP (Second Order Cone Programming), planning and force estimation using our framework achieves a 14x speed-up.
Abstract:Large language models (LLMs) have demonstrated impressive capabilities and are receiving increasing attention to enhance their reasoning through scaling test--time compute. However, their application in open--ended, knowledge--intensive, complex reasoning scenarios is still limited. Reasoning--oriented methods struggle to generalize to open--ended scenarios due to implicit assumptions of complete world knowledge. Meanwhile, knowledge--augmented reasoning (KAR) methods fail to address two core challenges: 1) error propagation, where errors in early steps cascade through the chain, and 2) verification bottleneck, where the explore--exploit tradeoff arises in multi--branch decision processes. To overcome these limitations, we introduce ARise, a novel framework that integrates risk assessment of intermediate reasoning states with dynamic retrieval--augmented generation (RAG) within a Monte Carlo tree search paradigm. This approach enables effective construction and optimization of reasoning plans across multiple maintained hypothesis branches. Experimental results show that ARise significantly outperforms the state--of--the--art KAR methods by up to 23.10%, and the latest RAG-equipped large reasoning models by up to 25.37%.
Abstract:Beyond pure text, a substantial amount of knowledge is stored in tables. In real-world scenarios, user questions often require retrieving answers that are distributed across multiple tables. GraphRAG has recently attracted much attention for enhancing LLMs' reasoning capabilities by organizing external knowledge to address ad-hoc and complex questions, exemplifying a promising direction for cross-table question answering. In this paper, to address the current gap in available data, we first introduce a multi-table benchmark, MutliTableQA, comprising 60k tables and 25k user queries collected from real-world sources. Then, we propose the first Graph-Table-RAG framework, namely GTR, which reorganizes table corpora into a heterogeneous graph, employs a hierarchical coarse-to-fine retrieval process to extract the most relevant tables, and integrates graph-aware prompting for downstream LLMs' tabular reasoning. Extensive experiments show that GTR exhibits superior cross-table question-answering performance while maintaining high deployment efficiency, demonstrating its real-world practical applicability.
Abstract:We introduce the WorldScore benchmark, the first unified benchmark for world generation. We decompose world generation into a sequence of next-scene generation tasks with explicit camera trajectory-based layout specifications, enabling unified evaluation of diverse approaches from 3D and 4D scene generation to video generation models. The WorldScore benchmark encompasses a curated dataset of 3,000 test examples that span diverse worlds: static and dynamic, indoor and outdoor, photorealistic and stylized. The WorldScore metrics evaluate generated worlds through three key aspects: controllability, quality, and dynamics. Through extensive evaluation of 19 representative models, including both open-source and closed-source ones, we reveal key insights and challenges for each category of models. Our dataset, evaluation code, and leaderboard can be found at https://haoyi-duan.github.io/WorldScore/
Abstract:To navigate crowds without collisions, robots must interact with humans by forecasting their future motion and reacting accordingly. While learning-based prediction models have shown success in generating likely human trajectory predictions, integrating these stochastic models into a robot controller presents several challenges. The controller needs to account for interactive coupling between planned robot motion and human predictions while ensuring both predictions and robot actions are safe (i.e. collision-free). To address these challenges, we present a receding horizon crowd navigation method for single-robot multi-human environments. We first propose a diffusion model to generate joint trajectory predictions for all humans in the scene. We then incorporate these multi-modal predictions into a SICNav Bilevel MPC problem that simultaneously solves for a robot plan (upper-level) and acts as a safety filter to refine the predictions for non-collision (lower-level). Combining planning and prediction refinement into one bilevel problem ensures that the robot plan and human predictions are coupled. We validate the open-loop trajectory prediction performance of our diffusion model on the commonly used ETH/UCY benchmark and evaluate the closed-loop performance of our robot navigation method in simulation and extensive real-robot experiments demonstrating safe, efficient, and reactive robot motion.
Abstract:Large language models (LLMs) have shown remarkable capability in natural language tasks, yet debate persists on whether they truly comprehend deep structure (i.e., core semantics) or merely rely on surface structure (e.g., presentation format). Prior studies observe that LLMs' performance declines when intervening on surface structure, arguing their success relies on surface structure recognition. However, surface structure sensitivity does not prevent deep structure comprehension. Rigorously evaluating LLMs' capability requires analyzing both, yet deep structure is often overlooked. To this end, we assess LLMs' comprehension ability using causal mediation analysis, aiming to fully discover the capability of using both deep and surface structures. Specifically, we formulate the comprehension of deep structure as direct causal effect (DCE) and that of surface structure as indirect causal effect (ICE), respectively. To address the non-estimability of original DCE and ICE -- stemming from the infeasibility of isolating mutual influences of deep and surface structures, we develop the corresponding quantifiable surrogates, including approximated DCE (ADCE) and approximated ICE (AICE). We further apply the ADCE to evaluate a series of mainstream LLMs, showing that most of them exhibit deep structure comprehension ability, which grows along with the prediction accuracy. Comparing ADCE and AICE demonstrates closed-source LLMs rely more on deep structure, while open-source LLMs are more surface-sensitive, which decreases with model scale. Theoretically, ADCE is a bidirectional evaluation, which measures both the sufficiency and necessity of deep structure changes in causing output variations, thus offering a more comprehensive assessment than accuracy, a common evaluation in LLMs. Our work provides new insights into LLMs' deep structure comprehension and offers novel methods for LLMs evaluation.