The University of Western Australia
Abstract:Large language models (LLMs) face significant deployment challenges due to their massive computational demands. % While pruning offers a promising compression solution, existing methods suffer from two critical limitations: (1) They neglect activation distribution shifts between calibration data and test data, resulting in inaccurate error estimations; (2) They overlook the long-tail distribution characteristics of activations in the attention module. To address these limitations, this paper proposes a novel pruning method, $D^2Prune$. First, we propose a dual Taylor expansion-based method that jointly models weight and activation perturbations for precise error estimation, leading to precise pruning mask selection and weight updating and facilitating error minimization during pruning. % Second, we propose an attention-aware dynamic update strategy that preserves the long-tail attention pattern by jointly minimizing the KL divergence of attention distributions and the reconstruction error. Extensive experiments show that $D^2Prune$ consistently outperforms SOTA methods across various LLMs (e.g., OPT-125M, LLaMA2/3, and Qwen3). Moreover, the dynamic attention update mechanism also generalizes well to ViT-based vision models like DeiT, achieving superior accuracy on ImageNet-1K.
Abstract:As an agent-level reasoning and coordination paradigm, Multi-Agent Debate (MAD) orchestrates multiple agents through structured debate to improve answer quality and support complex reasoning. However, existing research on MAD suffers from two fundamental limitations: evaluations are conducted under fragmented and inconsistent settings, hindering fair comparison, and are largely restricted to single-modality scenarios that rely on textual inputs only. To address these gaps, we introduce M3MAD-Bench, a unified and extensible benchmark for evaluating MAD methods across Multi-domain tasks, Multi-modal inputs, and Multi-dimensional metrics. M3MAD-Bench establishes standardized protocols over five core task domains: Knowledge, Mathematics, Medicine, Natural Sciences, and Complex Reasoning, and systematically covers both pure text and vision-language datasets, enabling controlled cross-modality comparison. We evaluate MAD methods on nine base models spanning different architectures, scales, and modality capabilities. Beyond accuracy, M3MAD-Bench incorporates efficiency-oriented metrics such as token consumption and inference time, providing a holistic view of performance--cost trade-offs. Extensive experiments yield systematic insights into the effectiveness, robustness, and efficiency of MAD across text-only and multimodal scenarios. We believe M3MAD-Bench offers a reliable foundation for future research on standardized MAD evaluation. The code is available at http://github.com/liaolea/M3MAD-Bench.
Abstract:While data-driven imitation learning has revolutionized robotic manipulation, current approaches remain constrained by the scarcity of large-scale, diverse real-world demonstrations. Consequently, the ability of existing models to generalize across long-horizon bimanual tasks and mobile manipulation in unstructured environments remains limited. To bridge this gap, we present RoboMIND 2.0, a comprehensive real-world dataset comprising over 310K dual-arm manipulation trajectories collected across six distinct robot embodiments and 739 complex tasks. Crucially, to support research in contact-rich and spatially extended tasks, the dataset incorporates 12K tactile-enhanced episodes and 20K mobile manipulation trajectories. Complementing this physical data, we construct high-fidelity digital twins of our real-world environments, releasing an additional 20K-trajectory simulated dataset to facilitate robust sim-to-real transfer. To fully exploit the potential of RoboMIND 2.0, we propose MIND-2 system, a hierarchical dual-system frame-work optimized via offline reinforcement learning. MIND-2 integrates a high-level semantic planner (MIND-2-VLM) to decompose abstract natural language instructions into grounded subgoals, coupled with a low-level Vision-Language-Action executor (MIND-2-VLA), which generates precise, proprioception-aware motor actions.




Abstract:In recent years, decentralized sensor networks have garnered significant attention in the field of state estimation owing to enhanced robustness, scalability, and fault tolerance. Optimal fusion performance can be achieved under fully connected communication and known noise correlation structures. To mitigate communication overhead, the global state estimation problem is decomposed into local subproblems through structured observation model. This ensures that even when the communication network is not fully connected, each sensor can achieve locally optimal estimates of its observable state components. To address the degradation of fusion accuracy induced by unknown correlations in measurement noise, this paper proposes a data-driven method, termed Decentralized Information Filter Neural Network (DIFNet), to learn unknown noise correlations in data for discrete-time nonlinear state space models with cross-correlated measurement noises. Numerical simulations demonstrate that DIFNet achieves superior fusion performance compared to conventional filtering methods and exhibits robust characteristics in more complex scenarios, such as the presence of time-varying noise. The source code used in our numerical experiment can be found online at https://wisdom-estimation.github.io/DIFNet_Demonstrate/.
Abstract:Designing protein sequences with optimal energetic stability is a key challenge in protein inverse folding, as current deep learning methods are primarily trained by maximizing sequence recovery rates, often neglecting the energy of the generated sequences. This work aims to overcome this limitation by developing a model that directly generates low-energy, stable protein sequences. We propose EnerBridge-DPO, a novel inverse folding framework focused on generating low-energy, high-stability protein sequences. Our core innovation lies in: First, integrating Markov Bridges with Direct Preference Optimization (DPO), where energy-based preferences are used to fine-tune the Markov Bridge model. The Markov Bridge initiates optimization from an information-rich prior sequence, providing DPO with a pool of structurally plausible sequence candidates. Second, an explicit energy constraint loss is introduced, which enhances the energy-driven nature of DPO based on prior sequences, enabling the model to effectively learn energy representations from a wealth of prior knowledge and directly predict sequence energy values, thereby capturing quantitative features of the energy landscape. Our evaluations demonstrate that EnerBridge-DPO can design protein complex sequences with lower energy while maintaining sequence recovery rates comparable to state-of-the-art models, and accurately predicts $\Delta \Delta G$ values between various sequences.
Abstract:Generative modeling-based visuomotor policies have been widely adopted in robotic manipulation attributed to their ability to model multimodal action distributions. However, the high inference cost of multi-step sampling limits their applicability in real-time robotic systems. To address this issue, existing approaches accelerate the sampling process in generative modeling-based visuomotor policies by adapting acceleration techniques originally developed for image generation. Despite this progress, a major distinction remains: image generation typically involves producing independent samples without temporal dependencies, whereas robotic manipulation involves generating time-series action trajectories that require continuity and temporal coherence. To effectively exploit temporal information in robotic manipulation, we propose FreqPolicy, a novel approach that first imposes frequency consistency constraints on flow-based visuomotor policies. Our work enables the action model to capture temporal structure effectively while supporting efficient, high-quality one-step action generation. We introduce a frequency consistency constraint that enforces alignment of frequency-domain action features across different timesteps along the flow, thereby promoting convergence of one-step action generation toward the target distribution. In addition, we design an adaptive consistency loss to capture structural temporal variations inherent in robotic manipulation tasks. We assess FreqPolicy on 53 tasks across 3 simulation benchmarks, proving its superiority over existing one-step action generators. We further integrate FreqPolicy into the vision-language-action (VLA) model and achieve acceleration without performance degradation on the 40 tasks of Libero. Besides, we show efficiency and effectiveness in real-world robotic scenarios with an inference frequency 93.5Hz. The code will be publicly available.
Abstract:Attention mechanisms have emerged as transformative tools in core AI domains such as natural language processing and computer vision. Yet, their largely untapped potential for modeling intricate physical systems presents a compelling frontier. Learning such systems often entails discovering operators that map between functional spaces using limited instances of function pairs -- a task commonly framed as a severely ill-posed inverse PDE problem. In this work, we introduce Neural Interpretable PDEs (NIPS), a novel neural operator architecture that builds upon and enhances Nonlocal Attention Operators (NAO) in both predictive accuracy and computational efficiency. NIPS employs a linear attention mechanism to enable scalable learning and integrates a learnable kernel network that acts as a channel-independent convolution in Fourier space. As a consequence, NIPS eliminates the need to explicitly compute and store large pairwise interactions, effectively amortizing the cost of handling spatial interactions into the Fourier transform. Empirical evaluations demonstrate that NIPS consistently surpasses NAO and other baselines across diverse benchmarks, heralding a substantial leap in scalable, interpretable, and efficient physics learning. Our code and data accompanying this paper are available at https://github.com/fishmoon1234/Nonlocal-Attention-Operator.
Abstract:The wide deployment of the generative pre-trained transformer (GPT) has raised privacy concerns for both clients and servers. While cryptographic primitives can be employed for secure GPT inference to protect the privacy of both parties, they introduce considerable performance overhead.To accelerate secure inference, this study proposes a public decoding and secure verification approach that utilizes public GPT models, motivated by the observation that securely decoding one and multiple tokens takes a similar latency. The client uses the public model to generate a set of tokens, which are then securely verified by the private model for acceptance. The efficiency of our approach depends on the acceptance ratio of tokens proposed by the public model, which we improve from two aspects: (1) a private sampling protocol optimized for cryptographic primitives and (2) model alignment using knowledge distillation. Our approach improves the efficiency of secure decoding while maintaining the same level of privacy and generation quality as standard secure decoding. Experiments demonstrate a $2.1\times \sim 6.0\times$ speedup compared to standard decoding across three pairs of public-private models and different network conditions.
Abstract:Graph Edit Distance (GED) is an important similarity measure in graph retrieval, which quantifies the minimum cost of transforming one graph into another through edit operations, and offers flexibility by allowing customizable operation costs. Recent learning-based approaches approximate GEDs with the distances between representations in vector spaces. However, these methods often struggle with varying operation costs due to neglecting the impact of these costs on determining optimal graph mappings. Furthermore, they rely on isolated node distances as guidance, necessitating inefficient reactive refinements of mappings. To address these issues, we propose Graph Edit Network (GEN), a novel learning-based approach for flexible GED computation. By identifying the limitations of existing methods in capturing flexibility of GED, we introduce a principled yet simple solution that incorporates the operation costs before establishing mappings. To improve matching efficiency, we propose a strategy that proactively optimizes guidance from a graph perspective. This strategy initializes guidance as each node's alignment difficulty and captures the interdependencies between matches within and across graphs through a difficulty propagation mechanism, enabling more informed decisions. As a result, GEN selects optimal matches in a single step, minimizing the need for costly refinements. Results on real-world and synthetic datasets demonstrate the effectiveness, time efficiency, and adaptability of GEN, achieving up to 37.8\% error reduction and 72.7\% inference time reduction compared with state-of-the-art models, while performing robustly under varying cost settings and graph sizes.
Abstract:Teleoperation is essential for autonomous robot learning, especially in manipulation tasks that require human demonstrations or corrections. However, most existing systems only offer unilateral robot control and lack the ability to synchronize the robot's status with the teleoperation hardware, preventing real-time, flexible intervention. In this work, we introduce HACTS (Human-As-Copilot Teleoperation System), a novel system that establishes bilateral, real-time joint synchronization between a robot arm and teleoperation hardware. This simple yet effective feedback mechanism, akin to a steering wheel in autonomous vehicles, enables the human copilot to intervene seamlessly while collecting action-correction data for future learning. Implemented using 3D-printed components and low-cost, off-the-shelf motors, HACTS is both accessible and scalable. Our experiments show that HACTS significantly enhances performance in imitation learning (IL) and reinforcement learning (RL) tasks, boosting IL recovery capabilities and data efficiency, and facilitating human-in-the-loop RL. HACTS paves the way for more effective and interactive human-robot collaboration and data-collection, advancing the capabilities of robot manipulation.