Abstract:With the increasing popularity of large language models (LLMs), reasoning on basic graph algorithm problems is an essential intermediate step in assessing their abilities to process and infer complex graph reasoning tasks. Existing methods usually convert graph-structured data to textual descriptions and then use LLMs for reasoning and computation. However, LLMs often produce computation errors on arithmetic parts in basic graph algorithm problems, such as counting number of edges. In addition, they struggle to control or understand the output of the reasoning process, raising concerns about whether LLMs are simply guessing. In this paper, we introduce CodeGraph, a method that encodes graph problem solutions as code. The methods solve new graph problems by learning from exemplars, generating programs, and executing them via a program interpreter. Using the few-shot setting, we evaluate CodeGraph with the base LLM being GPT-3.5 Turbo, Llama3-70B Instruct, Mixtral-8x22B Instruct, and Mixtral-8x7B Instruct. Experimental results on six tasks with six graph encoding methods in the GraphQA dataset demonstrate that CodeGraph can boost performance on graph reasoning tasks inside LLMs by 1.3% to 58.6%, depending on the task. Compared to the existing methods, CodeGraph demonstrates strong performance on arithmetic problems in graph tasks and offers a more controllable and interpretable approach to the reasoning process.
Abstract:Privacy research has attracted wide attention as individuals worry that their private data can be easily leaked during interactions with smart devices, social platforms, and AI applications. Computer science researchers, on the other hand, commonly study privacy issues through privacy attacks and defenses on segmented fields. Privacy research is conducted on various sub-fields, including Computer Vision (CV), Natural Language Processing (NLP), and Computer Networks. Within each field, privacy has its own formulation. Though pioneering works on attacks and defenses reveal sensitive privacy issues, they are narrowly trapped and cannot fully cover people's actual privacy concerns. Consequently, the research on general and human-centric privacy research remains rather unexplored. In this paper, we formulate the privacy issue as a reasoning problem rather than simple pattern matching. We ground on the Contextual Integrity (CI) theory which posits that people's perceptions of privacy are highly correlated with the corresponding social context. Based on such an assumption, we develop the first comprehensive checklist that covers social identities, private attributes, and existing privacy regulations. Unlike prior works on CI that either cover limited expert annotated norms or model incomplete social context, our proposed privacy checklist uses the whole Health Insurance Portability and Accountability Act of 1996 (HIPAA) as an example, to show that we can resort to large language models (LLMs) to completely cover the HIPAA's regulations. Additionally, our checklist also gathers expert annotations across multiple ontologies to determine private information including but not limited to personally identifiable information (PII). We use our preliminary results on the HIPAA to shed light on future context-centric privacy research to cover more privacy regulations, social norms and standards.
Abstract:Textual graphs are ubiquitous in real-world applications, featuring rich text information with complex relationships, which enables advanced research across various fields. Textual graph representation learning aims to generate low-dimensional feature embeddings from textual graphs that can improve the performance of downstream tasks. A high-quality feature embedding should effectively capture both the structural and the textual information in a textual graph. However, most textual graph dataset benchmarks rely on word2vec techniques to generate feature embeddings, which inherently limits their capabilities. Recent works on textual graph representation learning can be categorized into two folds: supervised and unsupervised methods. Supervised methods finetune a language model on labeled nodes, which have limited capabilities when labeled data is scarce. Unsupervised methods, on the other hand, extract feature embeddings by developing complex training pipelines. To address these limitations, we propose a novel unified unsupervised learning autoencoder framework, named Node Level Graph AutoEncoder (NodeGAE). We employ language models as the backbone of the autoencoder, with pretraining on text reconstruction. Additionally, we add an auxiliary loss term to make the feature embeddings aware of the local graph structure. Our method maintains simplicity in the training process and demonstrates generalizability across diverse textual graphs and downstream tasks. We evaluate our method on two core graph representation learning downstream tasks: node classification and link prediction. Comprehensive experiments demonstrate that our approach substantially enhances the performance of diverse graph neural networks (GNNs) across multiple textual graph datasets.
Abstract:Large language models (LLMs) have shown success in handling simple games with imperfect information and enabling multi-agent coordination, but their ability to facilitate practical collaboration against other agents in complex, imperfect information environments, especially in a non-English environment, still needs to be explored. This study investigates the applicability of knowledge acquired by open-source and API-based LLMs to sophisticated text-based games requiring agent collaboration under imperfect information, comparing their performance to established baselines using other types of agents. We propose a Theory of Mind (ToM) planning technique that allows LLM agents to adapt their strategy against various adversaries using only game rules, current state, and historical context as input. An external tool was incorporated to mitigate the challenge of dynamic and extensive action spaces in this card game. Our results show that although a performance gap exists between current LLMs and state-of-the-art reinforcement learning (RL) models, LLMs demonstrate ToM capabilities in this game setting. It consistently improves their performance against opposing agents, suggesting their ability to understand the actions of allies and adversaries and establish collaboration with allies. To encourage further research and understanding, we have made our codebase openly accessible.
Abstract:While large language models (LLMs) have demonstrated impressive capabilities across various natural language processing tasks by acquiring rich factual knowledge from their broad training data, their ability to synthesize and logically reason with this knowledge in complex ways remains underexplored. In this work, we present a systematic evaluation of state-of-the-art LLMs' complex logical reasoning abilities through a novel benchmark of automatically generated complex reasoning questions over general domain and biomedical knowledge graphs. Our extensive experiments, employing diverse in-context learning techniques, reveal that LLMs excel at reasoning over general world knowledge but face significant challenges with specialized domain-specific knowledge. We find that prompting with explicit Chain-of-Thought demonstrations can substantially improve LLM performance on complex logical reasoning tasks with diverse logical operations. Interestingly, our controlled evaluations uncover an asymmetry where LLMs display proficiency at set union operations, but struggle considerably with set intersections - a key building block of logical reasoning. To foster further work, we will publicly release our evaluation benchmark and code.
Abstract:Dialogical Argument Mining(DialAM) is an important branch of Argument Mining(AM). DialAM-2024 is a shared task focusing on dialogical argument mining, which requires us to identify argumentative relations and illocutionary relations among proposition nodes and locution nodes. To accomplish this, we propose a two-stage pipeline, which includes the Two-Step S-Node Prediction Model in Stage 1 and the YA-Node Prediction Model in Stage 2. We also augment the training data in both stages and introduce context in Stage 2. We successfully completed the task and achieved good results. Our team Pokemon ranked 1st in the ARI Focused score and 4th in the Global Focused score.
Abstract:Privacy issues arise prominently during the inappropriate transmission of information between entities. Existing research primarily studies privacy by exploring various privacy attacks, defenses, and evaluations within narrowly predefined patterns, while neglecting that privacy is not an isolated, context-free concept limited to traditionally sensitive data (e.g., social security numbers), but intertwined with intricate social contexts that complicate the identification and analysis of potential privacy violations. The advent of Large Language Models (LLMs) offers unprecedented opportunities for incorporating the nuanced scenarios outlined in privacy laws to tackle these complex privacy issues. However, the scarcity of open-source relevant case studies restricts the efficiency of LLMs in aligning with specific legal statutes. To address this challenge, we introduce a novel framework, GoldCoin, designed to efficiently ground LLMs in privacy laws for judicial assessing privacy violations. Our framework leverages the theory of contextual integrity as a bridge, creating numerous synthetic scenarios grounded in relevant privacy statutes (e.g., HIPAA), to assist LLMs in comprehending the complex contexts for identifying privacy risks in the real world. Extensive experimental results demonstrate that GoldCoin markedly enhances LLMs' capabilities in recognizing privacy risks across real court cases, surpassing the baselines on different judicial tasks.
Abstract:Entity- and event-level conceptualization, as fundamental elements of human cognition, plays a pivotal role in generalizable reasoning. This process involves abstracting specific instances into higher-level concepts and forming abstract knowledge that can be applied in unfamiliar or novel situations, which can enhance models' inferential capabilities and support the effective transfer of knowledge across various domains. Despite its significance, there is currently a lack of a systematic overview that comprehensively examines existing works in the definition, execution, and application of conceptualization to enhance reasoning tasks. In this paper, we address this gap by presenting the first comprehensive survey of 150+ papers, categorizing various definitions, resources, methods, and downstream applications related to conceptualization into a unified taxonomy, with a focus on the entity and event levels. Furthermore, we shed light on potential future directions in this field and hope to garner more attention from the community.
Abstract:Improving user experience and providing personalized search results in E-commerce platforms heavily rely on understanding purchase intention. However, existing methods for acquiring large-scale intentions bank on distilling large language models with human annotation for verification. Such an approach tends to generate product-centric intentions, overlook valuable visual information from product images, and incurs high costs for scalability. To address these issues, we introduce MIND, a multimodal framework that allows Large Vision-Language Models (LVLMs) to infer purchase intentions from multimodal product metadata and prioritize human-centric ones. Using Amazon Review data, we apply MIND and create a multimodal intention knowledge base, which contains 1,264,441 million intentions derived from 126,142 co-buy shopping records across 107,215 products. Extensive human evaluations demonstrate the high plausibility and typicality of our obtained intentions and validate the effectiveness of our distillation framework and filtering mechanism. Additional experiments reveal that our obtained intentions significantly enhance large language models in two intention comprehension tasks.
Abstract:Enhancing Language Models' (LMs) ability to understand purchase intentions in E-commerce scenarios is crucial for their effective assistance in various downstream tasks. However, previous approaches that distill intentions from LMs often fail to generate meaningful and human-centric intentions applicable in real-world E-commerce contexts. This raises concerns about the true comprehension and utilization of purchase intentions by LMs. In this paper, we present IntentionQA, a double-task multiple-choice question answering benchmark to evaluate LMs' comprehension of purchase intentions in E-commerce. Specifically, LMs are tasked to infer intentions based on purchased products and utilize them to predict additional purchases. IntentionQA consists of 4,360 carefully curated problems across three difficulty levels, constructed using an automated pipeline to ensure scalability on large E-commerce platforms. Human evaluations demonstrate the high quality and low false-negative rate of our benchmark. Extensive experiments across 19 language models show that they still struggle with certain scenarios, such as understanding products and intentions accurately, jointly reasoning with products and intentions, and more, in which they fall far behind human performances. Our code and data are publicly available at https://github.com/HKUST-KnowComp/IntentionQA.