Abduction has long been seen as crucial for narrative comprehension and reasoning about everyday situations. The abductive natural language inference ($\alpha$NLI) task has been proposed, and this narrative text-based task aims to infer the most plausible hypothesis from the candidates given two observations. However, the inter-sentential coherence and the model consistency have not been well exploited in the previous works on this task. In this work, we propose a prompt tuning model $\alpha$-PACE, which takes self-consistency and inter-sentential coherence into consideration. Besides, we propose a general self-consistent framework that considers various narrative sequences (e.g., linear narrative and reverse chronology) for guiding the pre-trained language model in understanding the narrative context of input. We conduct extensive experiments and thorough ablation studies to illustrate the necessity and effectiveness of $\alpha$-PACE. The performance of our method shows significant improvement against extensive competitive baselines.
Learning graph embeddings is a crucial task in graph mining tasks. An effective graph embedding model can learn low-dimensional representations from graph-structured data for data publishing benefiting various downstream applications such as node classification, link prediction, etc. However, recent studies have revealed that graph embeddings are susceptible to attribute inference attacks, which allow attackers to infer private node attributes from the learned graph embeddings. To address these concerns, privacy-preserving graph embedding methods have emerged, aiming to simultaneously consider primary learning and privacy protection through adversarial learning. However, most existing methods assume that representation models have access to all sensitive attributes in advance during the training stage, which is not always the case due to diverse privacy preferences. Furthermore, the commonly used adversarial learning technique in privacy-preserving representation learning suffers from unstable training issues. In this paper, we propose a novel approach called Private Variational Graph AutoEncoders (PVGAE) with the aid of independent distribution penalty as a regularization term. Specifically, we split the original variational graph autoencoder (VGAE) to learn sensitive and non-sensitive latent representations using two sets of encoders. Additionally, we introduce a novel regularization to enforce the independence of the encoders. We prove the theoretical effectiveness of regularization from the perspective of mutual information. Experimental results on three real-world datasets demonstrate that PVGAE outperforms other baselines in private embedding learning regarding utility performance and privacy protection.
To answer complex queries on knowledge graphs, logical reasoning over incomplete knowledge is required due to the open-world assumption. Learning-based methods are essential because they are capable of generalizing over unobserved knowledge. Therefore, an appropriate dataset is fundamental to both obtaining and evaluating such methods under this paradigm. In this paper, we propose a comprehensive framework for data generation, model training, and method evaluation that covers the combinatorial space of Existential First-order Queries with multiple variables ($\text{EFO}_{k}$). The combinatorial query space in our framework significantly extends those defined by set operations in the existing literature. Additionally, we construct a dataset, $\text{EFO}_{k}$-CQA, with 741 types of query for empirical evaluation, and our benchmark results provide new insights into how query hardness affects the results. Furthermore, we demonstrate that the existing dataset construction process is systematically biased that hinders the appropriate development of query-answering methods, highlighting the importance of our work. Our code and data are provided in~\url{https://github.com/HKUST-KnowComp/EFOK-CQA}.
A complex logic query in a knowledge graph refers to a query expressed in logic form that conveys a complex meaning, such as where did the Canadian Turing award winner graduate from? Knowledge graph reasoning-based applications, such as dialogue systems and interactive search engines, rely on the ability to answer complex logic queries as a fundamental task. In most knowledge graphs, edges are typically used to either describe the relationships between entities or their associated attribute values. An attribute value can be in categorical or numerical format, such as dates, years, sizes, etc. However, existing complex query answering (CQA) methods simply treat numerical values in the same way as they treat entities. This can lead to difficulties in answering certain queries, such as which Australian Pulitzer award winner is born before 1927, and which drug is a pain reliever and has fewer side effects than Paracetamol. In this work, inspired by the recent advances in numerical encoding and knowledge graph reasoning, we propose numerical complex query answering. In this task, we introduce new numerical variables and operations to describe queries involving numerical attribute values. To address the difference between entities and numerical values, we also propose the framework of Number Reasoning Network (NRN) for alternatively encoding entities and numerical values into separate encoding structures. During the numerical encoding process, NRN employs a parameterized density function to encode the distribution of numerical values. During the entity encoding process, NRN uses established query encoding methods for the original CQA problem. Experimental results show that NRN consistently improves various query encoding methods on three different knowledge graphs and achieves state-of-the-art results.
Querying incomplete knowledge graphs (KGs) using deep learning approaches can naturally leverage the reasoning and generalization ability to learn to infer better answers. Traditional neural complex query answering (CQA) approaches mostly work on entity-centric KGs. However, in the real world, we also need to make logical inferences about events, states, and activities (i.e., eventualities or situations) to push learning systems from System I to System II, as proposed by Yoshua Bengio. Querying logically from an EVentuality-centric KG (EVKG) can naturally provide references to such kind of intuitive and logical inference. Thus, in this paper, we propose a new framework to leverage neural methods to answer complex logical queries based on an EVKG, which can satisfy not only traditional first-order logic constraints but also implicit logical constraints over eventualities concerning their occurrences and orders. For instance, if we know that ``Food is bad'' happens before ``PersonX adds soy sauce,'' then ``PersonX adds soy sauce'' is unlikely to be the cause of ``Food is bad'' due to implicit temporal constraint. To facilitate consistent reasoning on EVKGs, we propose Complex Eventuality Query Answering (CEQA), a more rigorous definition of CQA that considers the implicit logical constraints governing the temporal order and occurrence of eventualities. In this manner, we propose to leverage theorem provers for constructing benchmark datasets to ensure the answers satisfy implicit logical constraints. We also propose a Memory-Enhanced Query Encoding (MEQE) approach to significantly improve the performance of state-of-the-art neural query encoders on the CEQA task.
Event temporal reasoning aims at identifying the temporal relations between two or more events. However, knowledge conflicts arise when there is a mismatch between the actual temporal relations of events in the context and the prior knowledge or biases learned by the model. We first systematically define distinct kinds of bias in event temporal reasoning, which include event relation prior bias, tense bias, narrative bias, and dependency bias, as indicators to study knowledge conflicts. To mitigate such event-related knowledge conflict, we introduce a Counterfactual Data Augmentation based method that can be applied to both Pre-trained Language Models (PLMs) and Large Language Models (LLMs) either as additional training data or demonstrations for In-Context Learning. Experiments suggest the importance of mitigating knowledge conflicts in event temporal reasoning tasks for reducing hallucination and highlight the potential of counterfactual data augmentation for improving model performance.
The task of zero-shot commonsense question answering evaluates models on their capacity to reason about general scenarios beyond those presented in specific datasets. Existing approaches for tackling this task leverage external knowledge from CommonSense Knowledge Bases (CSKBs) by pretraining the model on synthetic QA pairs constructed from CSKBs. In these approaches, negative examples (distractors) are formulated by randomly sampling from CSKBs using fairly primitive keyword constraints. However, two bottlenecks limit these approaches: the inherent incompleteness of CSKBs limits the semantic coverage of synthetic QA pairs, and the lack of human annotations makes the sampled negative examples potentially uninformative and contradictory. To tackle these limitations above, we propose Conceptualization-Augmented Reasoner (CAR), a zero-shot commonsense question-answering framework that fully leverages the power of conceptualization. Specifically, CAR abstracts a commonsense knowledge triple to many higher-level instances, which increases the coverage of CSKB and expands the ground-truth answer space, reducing the likelihood of selecting false-negative distractors. Extensive experiments demonstrate that CAR more robustly generalizes to answering questions about zero-shot commonsense scenarios than existing methods, including large language models, such as GPT3.5 and ChatGPT. Our codes, data, and model checkpoints are available at https://github.com/HKUST-KnowComp/CAR.
We propose and study Complementary Concept Generation (CCGen): given a concept of interest, e.g., "Digital Cameras", generating a list of complementary concepts, e.g., 1) Camera Lenses 2) Batteries 3) Camera Cases 4) Memory Cards 5) Battery Chargers. CCGen is beneficial for various applications like query suggestion and item recommendation, especially in the e-commerce domain. To solve CCGen, we propose to train language models to generate ranked lists of concepts with a two-step training strategy. We also teach the models to generate explanations by incorporating explanations distilled from large teacher models. Extensive experiments and analysis demonstrate that our model can generate high-quality concepts complementary to the input concept while producing explanations to justify the predictions.
This paper aims to quantitatively evaluate the performance of ChatGPT, an interactive large language model, on inter-sentential relations such as temporal relations, causal relations, and discourse relations. Given ChatGPT's promising performance across various tasks, we conduct extensive evaluations on the whole test sets of 13 datasets, including temporal and causal relations, PDTB2.0-based and dialogue-based discourse relations, and downstream applications on discourse understanding. To achieve reliable results, we adopt three tailored prompt templates for each task, including the zero-shot prompt template, zero-shot prompt engineering (PE) template, and in-context learning (ICL) prompt template, to establish the initial baseline scores for all popular sentence-pair relation classification tasks for the first time. We find that ChatGPT exhibits strong performance in detecting and reasoning about causal relations, while it may not be proficient in identifying the temporal order between two events. It can recognize most discourse relations with existing explicit discourse connectives, but the implicit discourse relation still remains a challenging task. Meanwhile, ChatGPT performs poorly in the dialogue discourse parsing task that requires structural understanding in a dialogue before being aware of the discourse relation.
Commonsense reasoning, aiming at endowing machines with a human-like ability to make situational presumptions, is extremely challenging to generalize. For someone who barely knows about "meditation," while is knowledgeable about "singing," he can still infer that "meditation makes people relaxed" from the existing knowledge that "singing makes people relaxed" by first conceptualizing "singing" as a "relaxing event" and then instantiating that event to "meditation." This process, known as conceptual induction and deduction, is fundamental to commonsense reasoning while lacking both labeled data and methodologies to enhance commonsense modeling. To fill such a research gap, we propose CAT (Contextualized ConceptuAlization and InsTantiation), a semi-supervised learning framework that integrates event conceptualization and instantiation to conceptualize commonsense knowledge bases at scale. Extensive experiments show that our framework achieves state-of-the-art performances on two conceptualization tasks, and the acquired abstract commonsense knowledge can significantly improve commonsense inference modeling. Our code, data, and fine-tuned models are publicly available at https://github.com/HKUST-KnowComp/CAT.