Abstract:Watermarking becomes one of the pivotal solutions to trace and verify the origin of synthetic images generated by artificial intelligence models, but it is not free of risks. Recent studies demonstrate the capability to forge watermarks from a target image onto cover images via adversarial optimization without knowledge of the target generative model and watermark schemes. In this paper, we uncover a greater risk of an optimization-free and universal watermark forgery that harnesses existing regenerative diffusion models. Our proposed forgery attack, PnP (Plug-and-Plant), seamlessly extracts and integrates the target watermark via regenerating the image, without needing any additional optimization routine. It allows for universal watermark forgery that works independently of the target image's origin or the watermarking model used. We explore the watermarked latent extracted from the target image and visual-textual context of cover images as priors to guide sampling of the regenerative process. Extensive evaluation on 24 scenarios of model-data-watermark combinations demonstrates that PnP can successfully forge the watermark (up to 100% detectability and user attribution), and maintain the best visual perception. By bypassing model retraining and enabling adaptability to any image, our approach significantly broadens the scope of forgery attacks, presenting a greater challenge to the security of current watermarking techniques for diffusion models and the authority of watermarking schemes in synthetic data generation and governance.
Abstract:Large Language Models (LLMs) have revolutionized Natural Language Processing by excelling at interpreting, reasoning about, and generating human language. However, their reliance on large-scale, often proprietary datasets poses a critical challenge: unauthorized usage of such data can lead to copyright infringement and significant financial harm. Existing dataset-inference methods typically depend on log probabilities to detect suspicious training material, yet many leading LLMs have begun withholding or obfuscating these signals. This reality underscores the pressing need for label-only approaches capable of identifying dataset membership without relying on internal model logits. We address this gap by introducing CatShift, a label-only dataset-inference framework that capitalizes on catastrophic forgetting: the tendency of an LLM to overwrite previously learned knowledge when exposed to new data. If a suspicious dataset was previously seen by the model, fine-tuning on a portion of it triggers a pronounced post-tuning shift in the model's outputs; conversely, truly novel data elicits more modest changes. By comparing the model's output shifts for a suspicious dataset against those for a known non-member validation set, we statistically determine whether the suspicious set is likely to have been part of the model's original training corpus. Extensive experiments on both open-source and API-based LLMs validate CatShift's effectiveness in logit-inaccessible settings, offering a robust and practical solution for safeguarding proprietary data.
Abstract:Recent advancements in large language models (LLMs) have underscored their vulnerability to safety alignment jailbreaks, particularly when subjected to downstream fine-tuning. However, existing mitigation strategies primarily focus on reactively addressing jailbreak incidents after safety guardrails have been compromised, removing harmful gradients during fine-tuning, or continuously reinforcing safety alignment throughout fine-tuning. As such, they tend to overlook a critical upstream factor: the role of the original safety-alignment data. This paper therefore investigates the degradation of safety guardrails through the lens of representation similarity between upstream alignment datasets and downstream fine-tuning tasks. Our experiments demonstrate that high similarity between these datasets significantly weakens safety guardrails, making models more susceptible to jailbreaks. Conversely, low similarity between these two types of datasets yields substantially more robust models and thus reduces harmfulness score by up to 10.33%. By highlighting the importance of upstream dataset design in the building of durable safety guardrails and reducing real-world vulnerability to jailbreak attacks, these findings offer actionable insights for fine-tuning service providers.
Abstract:As large-scale pre-trained foundation models continue to expand in size and capability, efficiently adapting them to specific downstream tasks has become increasingly critical. Despite substantial progress, existing adaptation approaches have evolved largely in isolation, without a clear understanding of their interrelationships. This survey introduces neural network reprogrammability as a unifying framework that bridges mainstream model adaptation techniques--model reprogramming, prompt tuning, and prompt instruction--previously fragmented research areas yet converges on a shared principle: repurposing a pre-trained model by manipulating information at the interfaces while keeping the model parameters frozen. These methods exploit neural networks' sensitivity to manipulation on different interfaces, be it through perturbing inputs, inserting tokens into intermediate layers, or providing task-specific examples in context, to redirect model behaviors towards desired outcomes. We then present a taxonomy that categorizes such information manipulation-based adaptation approaches across four key dimensions: manipulation format (fixed or learnable), location (interfaces where manipulations occur), operator (how they are applied), and output alignment requirement (post-processing needed to align outputs with downstream tasks). Notably, this framework applies consistently across data modalities, independent of specific model architectures. Moreover, viewing established techniques like in-context learning and chain-of-thought prompting through this lens reveals both their theoretical connections and practical distinctions. We further analyze remaining technical challenges and ethical considerations, positioning neural network reprogrammability as a fundamental paradigm for efficient model adaptation. We lastly identify promising research directions emerging from this integrative viewpoint.
Abstract:Large Language Model (LLM) agents show considerable promise for automating complex tasks using contextual reasoning; however, interactions involving multiple agents and the system's susceptibility to prompt injection and other forms of context manipulation introduce new vulnerabilities related to privacy leakage and system exploitation. This position paper argues that the well-established design principles in information security, which are commonly referred to as security principles, should be employed when deploying LLM agents at scale. Design principles such as defense-in-depth, least privilege, complete mediation, and psychological acceptability have helped guide the design of mechanisms for securing information systems over the last five decades, and we argue that their explicit and conscientious adoption will help secure agentic systems. To illustrate this approach, we introduce AgentSandbox, a conceptual framework embedding these security principles to provide safeguards throughout an agent's life-cycle. We evaluate with state-of-the-art LLMs along three dimensions: benign utility, attack utility, and attack success rate. AgentSandbox maintains high utility for its intended functions under both benign and adversarial evaluations while substantially mitigating privacy risks. By embedding secure design principles as foundational elements within emerging LLM agent protocols, we aim to promote trustworthy agent ecosystems aligned with user privacy expectations and evolving regulatory requirements.
Abstract:Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks: even a few harmful examples can compromise safety alignment. A common mitigation strategy is to update the model more strongly on examples deemed safe, while downweighting or excluding those flagged as unsafe. However, because safety context can shift within a single example, updating the model equally on both harmful and harmless parts of a response is suboptimal-a coarse treatment we term static safety shaping. In contrast, we propose dynamic safety shaping (DSS), a framework that uses fine-grained safety signals to reinforce learning from safe segments of a response while suppressing unsafe content. To enable such fine-grained control during finetuning, we introduce a key insight: guardrail models, traditionally used for filtering, can be repurposed to evaluate partial responses, tracking how safety risk evolves throughout the response, segment by segment. This leads to the Safety Trajectory Assessment of Response (STAR), a token-level signal that enables shaping to operate dynamically over the training sequence. Building on this, we present STAR-DSS, guided by STAR scores, that robustly mitigates finetuning risks and delivers substantial safety improvements across diverse threats, datasets, and model families-all without compromising capability on intended tasks. We encourage future safety research to build on dynamic shaping principles for stronger mitigation against evolving finetuning risks.
Abstract:Task arithmetic refers to editing the pre-trained model by adding a weighted sum of task vectors, each of which is the weight update from the pre-trained model to fine-tuned models for certain tasks. This approach recently gained attention as a computationally efficient inference method for model editing, e.g., multi-task learning, forgetting, and out-of-domain generalization capabilities. However, the theoretical understanding of why task vectors can execute various conceptual operations remains limited, due to the highly non-convexity of training Transformer-based models. To the best of our knowledge, this paper provides the first theoretical characterization of the generalization guarantees of task vector methods on nonlinear Transformers. We consider a conceptual learning setting, where each task is a binary classification problem based on a discriminative pattern. We theoretically prove the effectiveness of task addition in simultaneously learning a set of irrelevant or aligned tasks, as well as the success of task negation in unlearning one task from irrelevant or contradictory tasks. Moreover, we prove the proper selection of linear coefficients for task arithmetic to achieve guaranteed generalization to out-of-domain tasks. All of our theoretical results hold for both dense-weight parameters and their low-rank approximations. Although established in a conceptual setting, our theoretical findings were validated on a practical machine unlearning task using the large language model Phi-1.5 (1.3B).
Abstract:This paper explores inference-time data leakage risks of deep neural networks (NNs), where a curious and honest model service provider is interested in retrieving users' private data inputs solely based on the model inference results. Particularly, we revisit residual NNs due to their popularity in computer vision and our hypothesis that residual blocks are a primary cause of data leakage owing to the use of skip connections. By formulating inference-time data leakage as a constrained optimization problem, we propose a novel backward feature inversion method, \textbf{PEEL}, which can effectively recover block-wise input features from the intermediate output of residual NNs. The surprising results in high-quality input data recovery can be explained by the intuition that the output from these residual blocks can be considered as a noisy version of the input and thus the output retains sufficient information for input recovery. We demonstrate the effectiveness of our layer-by-layer feature inversion method on facial image datasets and pre-trained classifiers. Our results show that PEEL outperforms the state-of-the-art recovery methods by an order of magnitude when evaluated by mean squared error (MSE). The code is available at \href{https://github.com/Huzaifa-Arif/PEEL}{https://github.com/Huzaifa-Arif/PEEL}
Abstract:Fine-tuning Large Language Models (LLMs) on some task-specific datasets has been a primary use of LLMs. However, it has been empirically observed that this approach to enhancing capability inevitably compromises safety, a phenomenon also known as the safety-capability trade-off in LLM fine-tuning. This paper presents a theoretical framework for understanding the interplay between safety and capability in two primary safety-aware LLM fine-tuning strategies, providing new insights into the effects of data similarity, context overlap, and alignment loss landscape. Our theoretical results characterize the fundamental limits of the safety-capability trade-off in LLM fine-tuning, which are also validated by numerical experiments.
Abstract:Differentially private (DP) synthetic data has become the de facto standard for releasing sensitive data. However, many DP generative models suffer from the low utility of synthetic data, especially for high-resolution images. On the other hand, one of the emerging techniques in parameter efficient fine-tuning (PEFT) is visual prompting (VP), which allows well-trained existing models to be reused for the purpose of adapting to subsequent downstream tasks. In this work, we explore such a phenomenon in constructing captivating generative models with DP constraints. We show that VP in conjunction with DP-NTK, a DP generator that exploits the power of the neural tangent kernel (NTK) in training DP generative models, achieves a significant performance boost, particularly for high-resolution image datasets, with accuracy improving from 0.644$\pm$0.044 to 0.769. Lastly, we perform ablation studies on the effect of different parameters that influence the overall performance of VP-NTK. Our work demonstrates a promising step forward in improving the utility of DP synthetic data, particularly for high-resolution images.