Automatic high-quality rendering of anime scenes from complex real-world images is of significant practical value. The challenges of this task lie in the complexity of the scenes, the unique features of anime style, and the lack of high-quality datasets to bridge the domain gap. Despite promising attempts, previous efforts are still incompetent in achieving satisfactory results with consistent semantic preservation, evident stylization, and fine details. In this study, we propose Scenimefy, a novel semi-supervised image-to-image translation framework that addresses these challenges. Our approach guides the learning with structure-consistent pseudo paired data, simplifying the pure unsupervised setting. The pseudo data are derived uniquely from a semantic-constrained StyleGAN leveraging rich model priors like CLIP. We further apply segmentation-guided data selection to obtain high-quality pseudo supervision. A patch-wise contrastive style loss is introduced to improve stylization and fine details. Besides, we contribute a high-resolution anime scene dataset to facilitate future research. Our extensive experiments demonstrate the superiority of our method over state-of-the-art baselines in terms of both perceptual quality and quantitative performance.
Definition modeling is an important task in advanced natural language applications such as understanding and conversation. Since its introduction, it focus on generating one definition for a target word or phrase in a given context, which we refer to as Single Definition Modeling (SDM). However, this approach does not adequately model the correlations and patterns among different contexts and definitions of words. In addition, the creation of a training dataset for SDM requires significant human expertise and effort. In this paper, we carefully design a new task called Multiple Definition Modeling (MDM) that pool together all contexts and definition of target words. We demonstrate the ease of creating a model as well as multiple training sets automatically. % In the experiments, we demonstrate and analyze the benefits of MDM, including improving SDM's performance by using MDM as the pretraining task and its comparable performance in the zero-shot setting.
The practice of transferring knowledge from a sophisticated, closed-source large language model (LLM) to a compact, open-source LLM has garnered considerable attention. Previous works have focused on a unidirectional knowledge distillation way by aligning the responses of the student model with those of the teacher model to a set of instructions. Nevertheless, they overlooked the possibility of incorporating any reciprocal "feedback"--identifying challenging instructions where the student model's performance falls short--to boost the student model's proficiency iteratively. To this end, we propose a novel adversarial distillation framework for a more efficient knowledge transfer. Leveraging the versatile role adaptability of LLMs, we prompt the closed-source model to identify "hard" instructions and generate new "hard" instructions for the student model, creating a three-stage adversarial loop of imitation, discrimination, and generation. By applying this adversarial framework, we successfully transfer knowledge from ChatGPT to a 7B student model (named Lion), achieving nearly 95% capability approximation using a mere 70k training data. We aspire that this proposed model may serve as the baseline to reflect the performance of ChatGPT, especially the open-source instruction-following language model baseline for our community.
This paper aims to quantitatively evaluate the performance of ChatGPT, an interactive large language model, on inter-sentential relations such as temporal relations, causal relations, and discourse relations. Given ChatGPT's promising performance across various tasks, we conduct extensive evaluations on the whole test sets of 13 datasets, including temporal and causal relations, PDTB2.0-based and dialogue-based discourse relations, and downstream applications on discourse understanding. To achieve reliable results, we adopt three tailored prompt templates for each task, including the zero-shot prompt template, zero-shot prompt engineering (PE) template, and in-context learning (ICL) prompt template, to establish the initial baseline scores for all popular sentence-pair relation classification tasks for the first time. We find that ChatGPT exhibits strong performance in detecting and reasoning about causal relations, while it may not be proficient in identifying the temporal order between two events. It can recognize most discourse relations with existing explicit discourse connectives, but the implicit discourse relation still remains a challenging task. Meanwhile, ChatGPT performs poorly in the dialogue discourse parsing task that requires structural understanding in a dialogue before being aware of the discourse relation.
Masked Language Modeling (MLM) is widely used to pretrain language models. The standard random masking strategy in MLM causes the pre-trained language models (PLMs) to be biased toward high-frequency tokens. Representation learning of rare tokens is poor and PLMs have limited performance on downstream tasks. To alleviate this frequency bias issue, we propose two simple and effective Weighted Sampling strategies for masking tokens based on the token frequency and training loss. We apply these two strategies to BERT and obtain Weighted-Sampled BERT (WSBERT). Experiments on the Semantic Textual Similarity benchmark (STS) show that WSBERT significantly improves sentence embeddings over BERT. Combining WSBERT with calibration methods and prompt learning further improves sentence embeddings. We also investigate fine-tuning WSBERT on the GLUE benchmark and show that Weighted Sampling also improves the transfer learning capability of the backbone PLM. We further analyze and provide insights into how WSBERT improves token embeddings.
Due to the absence of explicit connectives, implicit discourse relation recognition (IDRR) remains a challenging task in discourse analysis. The critical step for IDRR is to learn high-quality discourse relation representations between two arguments. Recent methods tend to integrate the whole hierarchical information of senses into discourse relation representations for multi-level sense recognition. Nevertheless, they insufficiently incorporate the static hierarchical structure containing all senses (defined as global hierarchy), and ignore the hierarchical sense label sequence corresponding to each instance (defined as local hierarchy). For the purpose of sufficiently exploiting global and local hierarchies of senses to learn better discourse relation representations, we propose a novel GLobal and LOcal Hierarchy-aware Contrastive Framework (GLOF), to model two kinds of hierarchies with the aid of contrastive learning. Experimental results on the PDTB dataset demonstrate that our method remarkably outperforms the current state-of-the-art model at all hierarchical levels.
The performance of sentence representation has been remarkably improved by the framework of contrastive learning. However, recent works still require full fine-tuning, which is quite inefficient for large-scaled pre-trained language models. To this end, we present a novel method which freezes the whole language model and only optimizes the prefix deep continuous prompts. It not only tunes around 0.1% parameters of the original language model, but avoids the cumbersome computation of searching handcrafted prompts. Experimental results show that our proposed DCPCSE outperforms the state-of-the-art method SimCSE by a large margin. We raise the performance of unsupervised BERT$_{base}$ and supervised RoBERTa$_{large}$ by 2.24 and 1.00 points, respectively. Our code is publicly avaliable at https://github.com/YJiangcm/DCPCSE
Meme is an interesting word. Internet memes offer unique insights into the changes in our perception of the world, the media and our own lives. If you surf the Internet for long enough, you will see it somewhere on the Internet. With the rise of social media platforms and convenient image dissemination, Image Meme has gained fame. Image memes have become a kind of pop culture and they play an important role in communication over social media, blogs, and open messages. With the development of artificial intelligence and the widespread use of deep learning, Natural Language Processing (NLP) and Computer Vision (CV) can also be used to solve more problems in life, including meme generation. An Internet meme commonly takes the form of an image and is created by combining a meme template (image) and a caption (natural language sentence). In our project, we propose an end-to-end encoder-decoder architecture meme generator. For a given input sentence, we use the Meme template selection model to determine the emotion it expresses and select the image template. Then generate captions and memes through to the meme caption generator. Code and models are available at github
Fractures are widely developed in hydrocarbon reservoirs and constitute the accumulation spaces and transport channels of oil and gas. Fracture detection is a fundamental task for reservoir characterization. From prestack seismic gathers, anisotropic analysis and inversion were commonly applied to characterize the dominant orientations and relative intensities of fractures. However, the existing methods were mostly based on the vertical aligned facture hypothesis, it is impossible for them to recognize fracture dip. Furthermore, it is difficult or impractical for existing methods to attain the real fracture densities. Based on data-driven deep learning, this paper designed a convolutional neural network to perform prestack fracture detection. Capitalizing on the connections between seismic responses and fracture parameters, a suitable azimuth dataset was firstly generated through fracture effective medium modeling and anisotropic plane wave analyzing. Then a multi-input and multi-output convolutional neural network was constructed to simultaneously detect fracture density, dip and strike azimuth. The application on a practical survey validated the effectiveness of the proposed CNN model.