Alert button
Picture for Xin Liu

Xin Liu

Alert button

Query-Relevant Images Jailbreak Large Multi-Modal Models

Nov 29, 2023
Xin Liu, Yichen Zhu, Yunshi Lan, Chao Yang, Yu Qiao

Warning: This paper contains examples of harmful language and images, and reader discretion is recommended. The security concerns surrounding Large Language Models (LLMs) have been extensively explored, yet the safety of Large Multi-Modal Models (LMMs) remains understudied. In our study, we present a novel visual prompt attack that exploits query-relevant images to jailbreak the open-source LMMs. Our method creates a composite image from one image generated by diffusion models and another that displays the text as typography, based on keywords extracted from a malicious query. We show LLMs can be easily attacked by our approach, even if the employed Large Language Models are safely aligned. To evaluate the extent of this vulnerability in open-source LMMs, we have compiled a substantial dataset encompassing 13 scenarios with a total of 5,040 text-image pairs, using our presented attack technique. Our evaluation of 12 cutting-edge LMMs using this dataset shows the vulnerability of existing multi-modal models on adversarial attacks. This finding underscores the need for a concerted effort to strengthen and enhance the safety measures of open-source LMMs against potential malicious exploits. The resource is available at \href{this https URL}{https://github.com/isXinLiu/MM-SafetyBench}.

* Technique report 
Viaarxiv icon

From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models

Nov 25, 2023
Zachary Englhardt, Chengqian Ma, Margaret E. Morris, Xuhai "Orson" Xu, Chun-Cheng Chang, Lianhui Qin, Daniel McDuff, Xin Liu, Shwetak Patel, Vikram Iyer

Passively collected behavioral health data from ubiquitous sensors holds significant promise to provide mental health professionals insights from patient's daily lives; however, developing analysis tools to use this data in clinical practice requires addressing challenges of generalization across devices and weak or ambiguous correlations between the measured signals and an individual's mental health. To address these challenges, we take a novel approach that leverages large language models (LLMs) to synthesize clinically useful insights from multi-sensor data. We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data such as step count and sleep relate to conditions like depression and anxiety. We first demonstrate binary depression classification with LLMs achieving accuracies of 61.1% which exceed the state of the art. While it is not robust for clinical use, this leads us to our key finding: even more impactful and valued than classification is a new human-AI collaboration approach in which clinician experts interactively query these tools and combine their domain expertise and context about the patient with AI generated reasoning to support clinical decision-making. We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.

Viaarxiv icon

ALPHA: AnomaLous Physiological Health Assessment Using Large Language Models

Nov 21, 2023
Jiankai Tang, Kegang Wang, Hongming Hu, Xiyuxing Zhang, Peiyu Wang, Xin Liu, Yuntao Wang

This study concentrates on evaluating the efficacy of Large Language Models (LLMs) in healthcare, with a specific focus on their application in personal anomalous health monitoring. Our research primarily investigates the capabilities of LLMs in interpreting and analyzing physiological data obtained from FDA-approved devices. We conducted an extensive analysis using anomalous physiological data gathered in a simulated low-air-pressure plateau environment. This allowed us to assess the precision and reliability of LLMs in understanding and evaluating users' health status with notable specificity. Our findings reveal that LLMs exhibit exceptional performance in determining medical indicators, including a Mean Absolute Error (MAE) of less than 1 beat per minute for heart rate and less than 1% for oxygen saturation (SpO2). Furthermore, the Mean Absolute Percentage Error (MAPE) for these evaluations remained below 1%, with the overall accuracy of health assessments surpassing 85%. In image analysis tasks, such as interpreting photoplethysmography (PPG) data, our specially adapted GPT models demonstrated remarkable proficiency, achieving less than 1 bpm error in cycle count and 7.28 MAE for heart rate estimation. This study highlights LLMs' dual role as health data analysis tools and pivotal elements in advanced AI health assistants, offering personalized health insights and recommendations within the future health assistant framework.

Viaarxiv icon

AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph

Nov 16, 2023
Zhaowei Wang, Haochen Shi, Weiqi Wang, Tianqing Fang, Hongming Zhang, Sehyun Choi, Xin Liu, Yangqiu Song

Cognitive research indicates that abstraction ability is essential in human intelligence, which remains under-explored in language models. In this paper, we present AbsPyramid, a unified entailment graph of 221K textual descriptions of abstraction knowledge. While existing resources only touch nouns or verbs within simplified events or specific domains, AbsPyramid collects abstract knowledge for three components of diverse events to comprehensively evaluate the abstraction ability of language models in the open domain. Experimental results demonstrate that current LLMs face challenges comprehending abstraction knowledge in zero-shot and few-shot settings. By training on our rich abstraction knowledge, we find LLMs can acquire basic abstraction abilities and generalize to unseen events. In the meantime, we empirically show that our benchmark is comprehensive to enhance LLMs across two previous abstraction tasks.

* Work in progress 
Viaarxiv icon

Improving Zero-shot Visual Question Answering via Large Language Models with Reasoning Question Prompts

Nov 15, 2023
Yunshi Lan, Xiang Li, Xin Liu, Yang Li, Wei Qin, Weining Qian

Zero-shot Visual Question Answering (VQA) is a prominent vision-language task that examines both the visual and textual understanding capability of systems in the absence of training data. Recently, by converting the images into captions, information across multi-modalities is bridged and Large Language Models (LLMs) can apply their strong zero-shot generalization capability to unseen questions. To design ideal prompts for solving VQA via LLMs, several studies have explored different strategies to select or generate question-answer pairs as the exemplar prompts, which guide LLMs to answer the current questions effectively. However, they totally ignore the role of question prompts. The original questions in VQA tasks usually encounter ellipses and ambiguity which require intermediate reasoning. To this end, we present Reasoning Question Prompts for VQA tasks, which can further activate the potential of LLMs in zero-shot scenarios. Specifically, for each question, we first generate self-contained questions as reasoning question prompts via an unsupervised question edition module considering sentence fluency, semantic integrity and syntactic invariance. Each reasoning question prompt clearly indicates the intent of the original question. This results in a set of candidate answers. Then, the candidate answers associated with their confidence scores acting as answer heuristics are fed into LLMs and produce the final answer. We evaluate reasoning question prompts on three VQA challenges, experimental results demonstrate that they can significantly improve the results of LLMs on zero-shot setting and outperform existing state-of-the-art zero-shot methods on three out of four data sets. Our source code is publicly released at \url{https://github.com/ECNU-DASE-NLP/RQP}.

Viaarxiv icon

Training Robust Deep Physiological Measurement Models with Synthetic Video-based Data

Nov 15, 2023
Yuxuan Ou, Yuzhe Zhang, Yuntang Wang, Shwetak Patel, Daniel McDuf, Yuzhe Yang, Xin Liu

Recent advances in supervised deep learning techniques have demonstrated the possibility to remotely measure human physiological vital signs (e.g., photoplethysmograph, heart rate) just from facial videos. However, the performance of these methods heavily relies on the availability and diversity of real labeled data. Yet, collecting large-scale real-world data with high-quality labels is typically challenging and resource intensive, which also raises privacy concerns when storing personal bio-metric data. Synthetic video-based datasets (e.g., SCAMPS \cite{mcduff2022scamps}) with photo-realistic synthesized avatars are introduced to alleviate the issues while providing high-quality synthetic data. However, there exists a significant gap between synthetic and real-world data, which hinders the generalization of neural models trained on these synthetic datasets. In this paper, we proposed several measures to add real-world noise to synthetic physiological signals and corresponding facial videos. We experimented with individual and combined augmentation methods and evaluated our framework on three public real-world datasets. Our results show that we were able to reduce the average MAE from 6.9 to 2.0.

Viaarxiv icon

4K-Resolution Photo Exposure Correction at 125 FPS with ~8K Parameters

Nov 15, 2023
Yijie Zhou, Chao Li, Jin Liang, Tianyi Xu, Xin Liu, Jun Xu

The illumination of improperly exposed photographs has been widely corrected using deep convolutional neural networks or Transformers. Despite with promising performance, these methods usually suffer from large parameter amounts and heavy computational FLOPs on high-resolution photographs. In this paper, we propose extremely light-weight (with only ~8K parameters) Multi-Scale Linear Transformation (MSLT) networks under the multi-layer perception architecture, which can process 4K-resolution sRGB images at 125 Frame-Per-Second (FPS) by a Titan RTX GPU. Specifically, the proposed MSLT networks first decompose an input image into high and low frequency layers by Laplacian pyramid techniques, and then sequentially correct different layers by pixel-adaptive linear transformation, which is implemented by efficient bilateral grid learning or 1x1 convolutions. Experiments on two benchmark datasets demonstrate the efficiency of our MSLTs against the state-of-the-arts on photo exposure correction. Extensive ablation studies validate the effectiveness of our contributions. The code is available at https://github.com/Zhou-Yijie/MSLTNet.

* WACV2024 
Viaarxiv icon

P-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models

Nov 07, 2023
Haoran Li, Dadi Guo, Donghao Li, Wei Fan, Qi Hu, Xin Liu, Chunkit Chan, Duanyi Yao, Yangqiu Song

The rapid development of language models (LMs) brings unprecedented accessibility and usage for both models and users. On the one hand, powerful LMs, trained with massive textual data, achieve state-of-the-art performance over numerous downstream NLP tasks. On the other hand, more and more attention is paid to unrestricted model accesses that may bring malicious privacy risks of data leakage. To address these issues, many recent works propose privacy-preserving language models (PPLMs) with differential privacy (DP). Unfortunately, different DP implementations make it challenging for a fair comparison among existing PPLMs. In this paper, we present P-Bench, a multi-perspective privacy evaluation benchmark to empirically and intuitively quantify the privacy leakage of LMs. Instead of only protecting and measuring the privacy of protected data with DP parameters, P-Bench sheds light on the neglected inference data privacy during actual usage. P-Bench first clearly defines multi-faceted privacy objectives during private fine-tuning. Then, P-Bench constructs a unified pipeline to perform private fine-tuning. Lastly, P-Bench performs existing privacy attacks on LMs with pre-defined privacy objectives as the empirical evaluation results. The empirical attack results are used to fairly and intuitively evaluate the privacy leakage of various PPLMs. We conduct extensive experiments on three datasets of GLUE for mainstream LMs.

* Work In Progress 
Viaarxiv icon

IBADR: an Iterative Bias-Aware Dataset Refinement Framework for Debiasing NLU models

Nov 01, 2023
Xiaoyue Wang, Xin Liu, Lijie Wang, Yaoxiang Wang, Jinsong Su, Hua Wu

As commonly-used methods for debiasing natural language understanding (NLU) models, dataset refinement approaches heavily rely on manual data analysis, and thus maybe unable to cover all the potential biased features. In this paper, we propose IBADR, an Iterative Bias-Aware Dataset Refinement framework, which debiases NLU models without predefining biased features. We maintain an iteratively expanded sample pool. Specifically, at each iteration, we first train a shallow model to quantify the bias degree of samples in the pool. Then, we pair each sample with a bias indicator representing its bias degree, and use these extended samples to train a sample generator. In this way, this generator can effectively learn the correspondence relationship between bias indicators and samples. Furthermore, we employ the generator to produce pseudo samples with fewer biased features by feeding specific bias indicators. Finally, we incorporate the generated pseudo samples into the pool. Experimental results and in-depth analyses on two NLU tasks show that IBADR not only significantly outperforms existing dataset refinement approaches, achieving SOTA, but also is compatible with model-centric methods.

* EMNLP2023 main conference 
Viaarxiv icon