The Hong Kong University of Science and Technology
Abstract:Humans can efficiently extract knowledge and learn skills from the videos within only a few trials and errors. However, it poses a big challenge to replicate this learning process for autonomous agents, due to the complexity of visual input, the absence of action or reward signals, and the limitations of interaction steps. In this paper, we propose a novel, unsupervised, and sample-efficient framework to achieve imitation learning from videos (ILV), named Behavior Cloning from Videos via Latent Representations (BCV-LR). BCV-LR extracts action-related latent features from high-dimensional video inputs through self-supervised tasks, and then leverages a dynamics-based unsupervised objective to predict latent actions between consecutive frames. The pre-trained latent actions are fine-tuned and efficiently aligned to the real action space online (with collected interactions) for policy behavior cloning. The cloned policy in turn enriches the agent experience for further latent action finetuning, resulting in an iterative policy improvement that is highly sample-efficient. We conduct extensive experiments on a set of challenging visual tasks, including both discrete control and continuous control. BCV-LR enables effective (even expert-level on some tasks) policy performance with only a few interactions, surpassing state-of-the-art ILV baselines and reinforcement learning methods (provided with environmental rewards) in terms of sample efficiency across 24/28 tasks. To the best of our knowledge, this work for the first time demonstrates that videos can support extremely sample-efficient visual policy learning, without the need to access any other expert supervision.
Abstract:Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
Abstract:Recent advances in multimodal large language models unlock unprecedented opportunities for GUI automation. However, a fundamental challenge remains: how to efficiently acquire high-quality training data while maintaining annotation reliability? We introduce a self-evolving training pipeline powered by the Calibrated Step Reward System, which converts model-generated trajectories into reliable training signals through trajectory-level calibration, achieving >90% annotation accuracy with 10-100x lower cost. Leveraging this pipeline, we introduce Step-GUI, a family of models (4B/8B) that achieves state-of-the-art GUI performance (8B: 80.2% AndroidWorld, 48.5% OSWorld, 62.6% ScreenShot-Pro) while maintaining robust general capabilities. As GUI agent capabilities improve, practical deployment demands standardized interfaces across heterogeneous devices while protecting user privacy. To this end, we propose GUI-MCP, the first Model Context Protocol for GUI automation with hierarchical architecture that combines low-level atomic operations and high-level task delegation to local specialist models, enabling high-privacy execution where sensitive data stays on-device. Finally, to assess whether agents can handle authentic everyday usage, we introduce AndroidDaily, a benchmark grounded in real-world mobile usage patterns with 3146 static actions and 235 end-to-end tasks across high-frequency daily scenarios (8B: static 89.91%, end-to-end 52.50%). Our work advances the development of practical GUI agents and demonstrates strong potential for real-world deployment in everyday digital interactions.
Abstract:Agents, language model-based systems that are capable of reasoning, planning, and acting are becoming the dominant paradigm for real-world AI applications. Despite this widespread adoption, the principles that determine their performance remain underexplored. We address this by deriving quantitative scaling principles for agent systems. We first formalize a definition for agentic evaluation and characterize scaling laws as the interplay between agent quantity, coordination structure, model capability, and task properties. We evaluate this across four benchmarks: Finance-Agent, BrowseComp-Plus, PlanCraft, and Workbench. With five canonical agent architectures (Single-Agent and four Multi-Agent Systems: Independent, Centralized, Decentralized, Hybrid), instantiated across three LLM families, we perform a controlled evaluation spanning 180 configurations. We derive a predictive model using coordination metrics, that achieves cross-validated R^2=0.524, enabling prediction on unseen task domains. We identify three effects: (1) a tool-coordination trade-off: under fixed computational budgets, tool-heavy tasks suffer disproportionately from multi-agent overhead. (2) a capability saturation: coordination yields diminishing or negative returns once single-agent baselines exceed ~45%. (3) topology-dependent error amplification: independent agents amplify errors 17.2x, while centralized coordination contains this to 4.4x. Centralized coordination improves performance by 80.8% on parallelizable tasks, while decentralized coordination excels on web navigation (+9.2% vs. +0.2%). Yet for sequential reasoning tasks, every multi-agent variants degraded performance by 39-70%. The framework predicts the optimal coordination strategy for 87% of held-out configurations. Out-of-sample validation on GPT-5.2, achieves MAE=0.071 and confirms four of five scaling principles generalize to unseen frontier models.
Abstract:Generating adversarial examples (AEs) can be formulated as an optimization problem. Among various optimization-based attacks, the gradient-based PGD and the momentum-based MI-FGSM have garnered considerable interest. However, all these attacks use the sign function to scale their perturbations, which raises several theoretical concerns from the point of view of optimization. In this paper, we first reveal that PGD is actually a specific reformulation of the projected gradient method using only the current gradient to determine its step-size. Further, we show that when we utilize a conventional adaptive matrix with the accumulated gradients to scale the perturbation, PGD becomes AdaGrad. Motivated by this analysis, we present a novel momentum-based attack AdaMI, in which the perturbation is optimized with an interesting momentum-based adaptive matrix. AdaMI is proved to attain optimal convergence for convex problems, indicating that it addresses the non-convergence issue of MI-FGSM, thereby ensuring stability of the optimization process. The experiments demonstrate that the proposed momentum-based adaptive matrix can serve as a general and effective technique to boost adversarial transferability over the state-of-the-art methods across different networks while maintaining better stability and imperceptibility.
Abstract:Instruction-based text editing is increasingly critical for real-world applications such as code editors (e.g., Cursor), but Large Language Models (LLMs) continue to struggle with this task. Unlike free-form generation, editing requires faithfully implementing user instructions while preserving unchanged content, as even minor unintended modifications can break functionality. Existing approaches treat editing as generic text generation, leading to two key failures: they struggle to faithfully align edits with diverse user intents, and they often over-edit unchanged regions. We propose HyperEdit to address both issues. First, we introduce hypernetwork-based dynamic adaptation that generates request-specific parameters, enabling the model to tailor its editing strategy to each instruction. Second, we develop difference-aware regularization that focuses supervision on modified spans, preventing over-editing while ensuring precise, minimal changes. HyperEdit achieves a 9%--30% relative improvement in BLEU on modified regions over state-of-the-art baselines, despite utilizing only 3B parameters.
Abstract:Multimodal LLM-powered agents have recently demonstrated impressive capabilities in web navigation, enabling agents to complete complex browsing tasks across diverse domains. However, current agents struggle with repetitive errors and lack the ability to learn from past experiences across sessions, limiting their long-term robustness and sample efficiency. We introduce WebCoach, a model-agnostic self-evolving framework that equips web browsing agents with persistent cross-session memory, enabling improved long-term planning, reflection, and continual learning without retraining. WebCoach consists of three key components: (1) a WebCondenser, which standardizes raw navigation logs into concise summaries; (2) an External Memory Store, which organizes complete trajectories as episodic experiences; and (3) a Coach, which retrieves relevant experiences based on similarity and recency, and decides whether to inject task-specific advice into the agent via runtime hooks. This design empowers web agents to access long-term memory beyond their native context window, improving robustness in complex browsing tasks. Moreover, WebCoach achieves self-evolution by continuously curating episodic memory from new navigation trajectories, enabling agents to improve over time without retraining. Evaluations on the WebVoyager benchmark demonstrate that WebCoach consistently improves the performance of browser-use agents across three different LLM backbones. With a 38B model, it increases task success rates from 47% to 61% while reducing or maintaining the average number of steps. Notably, smaller base models with WebCoach achieve performance comparable to the same web agent using GPT-4o.




Abstract:We introduce Virtual Width Networks (VWN), a framework that delivers the benefits of wider representations without incurring the quadratic cost of increasing the hidden size. VWN decouples representational width from backbone width, expanding the embedding space while keeping backbone compute nearly constant. In our large-scale experiment, an 8-times expansion accelerates optimization by over 2 times for next-token and 3 times for next-2-token prediction. The advantage amplifies over training as both the loss gap grows and the convergence-speedup ratio increases, showing that VWN is not only token-efficient but also increasingly effective with scale. Moreover, we identify an approximately log-linear scaling relation between virtual width and loss reduction, offering an initial empirical basis and motivation for exploring virtual-width scaling as a new dimension of large-model efficiency.
Abstract:Recent advancements in large language models (LLMs) have demonstrated remarkable text generation capabilities. However, controlling specific attributes of generated text remains challenging without architectural modifications or extensive fine-tuning. Current methods typically toggle a single, basic attribute but struggle with precise multi-attribute control. In scenarios where attribute requirements conflict, existing methods lack coordination mechanisms, causing interference between desired attributes. Furthermore, these methods fail to incorporate iterative optimization processes in the controlled generation pipeline. To address these limitations, we propose Conflict-aware, Composite, and Collaborative Controlled Text Generation (C$^3$TG), a two-phase framework for fine-grained, multi-dimensional text attribute control. During generation, C$^3$TG selectively pairs the LLM with the required attribute classifiers from the 17 available dimensions and employs weighted KL-divergence to adjust token probabilities. The optimization phase then leverages an energy function combining classifier scores and penalty terms to resolve attribute conflicts through iterative feedback, enabling precise control over multiple dimensions simultaneously while preserving natural text flow. Experiments show that C$^3$TG significantly outperforms baselines across multiple metrics including attribute accuracy, linguistic fluency, and output diversity, while simultaneously reducing toxicity. These results establish C$^3$TG as an effective and flexible solution for multi-dimensional text attribute control that requires no costly model modifications.
Abstract:Online health resources and large language models (LLMs) are increasingly used as a first point of contact for medical decision-making, yet their reliability in healthcare remains limited by low accuracy, lack of transparency, and susceptibility to unverified information. We introduce a proof-of-concept conversational self-triage system that guides LLMs with 100 clinically validated flowcharts from the American Medical Association, providing a structured and auditable framework for patient decision support. The system leverages a multi-agent framework consisting of a retrieval agent, a decision agent, and a chat agent to identify the most relevant flowchart, interpret patient responses, and deliver personalized, patient-friendly recommendations, respectively. Performance was evaluated at scale using synthetic datasets of simulated conversations. The system achieved 95.29% top-3 accuracy in flowchart retrieval (N=2,000) and 99.10% accuracy in flowchart navigation across varied conversational styles and conditions (N=37,200). By combining the flexibility of free-text interaction with the rigor of standardized clinical protocols, this approach demonstrates the feasibility of transparent, accurate, and generalizable AI-assisted self-triage, with potential to support informed patient decision-making while improving healthcare resource utilization.