Abstract:Contact-rich manipulation in unstructured environments demands precise, multimodal perception to enable robust and adaptive control. Vision-based tactile sensors (VBTSs) have emerged as an effective solution; however, conventional VBTSs often face challenges in achieving compact, multi-modal functionality due to hardware constraints and algorithmic complexity. In this work, we present MagicGripper, a multimodal sensor-integrated gripper designed for contact-rich robotic manipulation. Building on our prior design, MagicTac, we develop a compact variant, mini-MagicTac, which features a three-dimensional, multi-layered grid embedded in a soft elastomer. MagicGripper integrates mini-MagicTac, enabling high-resolution tactile feedback alongside proximity and visual sensing within a compact, gripper-compatible form factor. We conduct a thorough evaluation of mini-MagicTac's performance, demonstrating its capabilities in spatial resolution, contact localization, and force regression. We also assess its robustness across manufacturing variability, mechanical deformation, and sensing performance under real-world conditions. Furthermore, we validate the effectiveness of MagicGripper through three representative robotic tasks: a teleoperated assembly task, a contact-based alignment task, and an autonomous robotic grasping task. Across these experiments, MagicGripper exhibits reliable multimodal perception, accurate force estimation, and high adaptability to challenging manipulation scenarios. Our results highlight the potential of MagicGripper as a practical and versatile tool for embodied intelligence in complex, contact-rich environments.
Abstract:Vision-Language Models (VLMs) have made significant progress in multimodal tasks. However, their performance often deteriorates in long-context scenarios, particularly long videos. While Rotary Position Embedding (RoPE) has been widely adopted for length generalization in Large Language Models (LLMs), extending vanilla RoPE to capture the intricate spatial-temporal dependencies in videos remains an unsolved challenge. Existing methods typically allocate different frequencies within RoPE to encode 3D positional information. However, these allocation strategies mainly rely on heuristics, lacking in-depth theoretical analysis. In this paper, we first study how different allocation strategies impact the long-context capabilities of VLMs. Our analysis reveals that current multimodal RoPEs fail to reliably capture semantic similarities over extended contexts. To address this issue, we propose HoPE, a Hybrid of Position Embedding designed to improve the long-context capabilities of VLMs. HoPE introduces a hybrid frequency allocation strategy for reliable semantic modeling over arbitrarily long context, and a dynamic temporal scaling mechanism to facilitate robust learning and flexible inference across diverse context lengths. Extensive experiments across four video benchmarks on long video understanding and retrieval tasks demonstrate that HoPE consistently outperforms existing methods, confirming its effectiveness. Code is available at https://github.com/hrlics/HoPE.
Abstract:Developing scalable and generalizable reward engineering for reinforcement learning (RL) is crucial for creating general-purpose agents, especially in the challenging domain of robotic manipulation. While recent advances in reward engineering with Vision-Language Models (VLMs) have shown promise, their sparse reward nature significantly limits sample efficiency. This paper introduces TeViR, a novel method that leverages a pre-trained text-to-video diffusion model to generate dense rewards by comparing the predicted image sequence with current observations. Experimental results across 11 complex robotic tasks demonstrate that TeViR outperforms traditional methods leveraging sparse rewards and other state-of-the-art (SOTA) methods, achieving better sample efficiency and performance without ground truth environmental rewards. TeViR's ability to efficiently guide agents in complex environments highlights its potential to advance reinforcement learning applications in robotic manipulation.
Abstract:With the advancement of edge computing, federated learning (FL) displays a bright promise as a privacy-preserving collaborative learning paradigm. However, one major challenge for FL is the data heterogeneity issue, which refers to the biased labeling preferences among multiple clients, negatively impacting convergence and model performance. Most previous FL methods attempt to tackle the data heterogeneity issue locally or globally, neglecting underlying class-wise structure information contained in each client. In this paper, we first study how data heterogeneity affects the divergence of the model and decompose it into local, global, and sampling drift sub-problems. To explore the potential of using intra-client class-wise structural knowledge in handling these drifts, we thus propose Federated Learning with Structural Knowledge Collaboration (FedSKC). The key idea of FedSKC is to extract and transfer domain preferences from inter-client data distributions, offering diverse class-relevant knowledge and a fair convergent signal. FedSKC comprises three components: i) local contrastive learning, to prevent weight divergence resulting from local training; ii) global discrepancy aggregation, which addresses the parameter deviation between the server and clients; iii) global period review, correcting for the sampling drift introduced by the server randomly selecting devices. We have theoretically analyzed FedSKC under non-convex objectives and empirically validated its superiority through extensive experimental results.
Abstract:Non-stationary power system dynamics, influenced by renewable energy variability, evolving demand patterns, and climate change, are becoming increasingly complex. Accurately capturing these dynamics requires a model capable of adapting to environmental factors. Traditional models, including Recurrent Neural Networks (RNNs), lack efficient mechanisms to encode external factors, such as time or environmental data, for dynamic adaptation. To address this, we propose the External Adaptive RNN (ExARNN), a novel framework that integrates external data (e.g., weather, time) to continuously adjust the parameters of a base RNN. ExARNN achieves this through a hierarchical hypernetwork design, using Neural Controlled Differential Equations (NCDE) to process external data and generate RNN parameters adaptively. This approach enables ExARNN to handle inconsistent timestamps between power and external measurements, ensuring continuous adaptation. Extensive forecasting tests demonstrate ExARNN's superiority over established baseline models.
Abstract:We present GMatch, a learning-free feature matcher designed for robust 6DoF object pose estimation, addressing common local ambiguities in sparse feature matching. Unlike traditional methods that rely solely on descriptor similarity, GMatch performs a guided, incremental search, enforcing SE(3)-invariant geometric consistency throughout the matching process. It leverages a provably complete set of geometric features that uniquely determine 3D keypoint configurations, ensuring globally consistent correspondences without the need for training or GPU support. When combined with classical descriptors such as SIFT, GMatch-SIFT forms a general-purpose pose estimation pipeline that offers strong interpretability and generalization across diverse objects and scenes. Experiments on the HOPE dataset show that GMatch outperforms both traditional and learning-based matchers, with GMatch-SIFT achieving or surpassing the performance of instance-level pose networks. On the YCB-Video dataset, GMatch-SIFT demonstrates high accuracy and low variance on texture-rich objects. These results not only validate the effectiveness of GMatch-SIFT for object pose estimation but also highlight the broader applicability of GMatch as a general-purpose feature matcher. Code will be released upon acceptance.
Abstract:As Model Context Protocol (MCP) introduces an easy-to-use ecosystem for users and developers, it also brings underexplored safety risks. Its decentralized architecture, which separates clients and servers, poses unique challenges for systematic safety analysis. This paper proposes a novel framework to enhance MCP safety. Guided by the MAESTRO framework, we first analyze the missing safety mechanisms in MCP, and based on this analysis, we propose the Model Contextual Integrity Protocol (MCIP), a refined version of MCP that addresses these gaps. Next, we develop a fine-grained taxonomy that captures a diverse range of unsafe behaviors observed in MCP scenarios. Building on this taxonomy, we develop benchmark and training data that support the evaluation and improvement of LLMs' capabilities in identifying safety risks within MCP interactions. Leveraging the proposed benchmark and training data, we conduct extensive experiments on state-of-the-art LLMs. The results highlight LLMs' vulnerabilities in MCP interactions and demonstrate that our approach substantially improves their safety performance.
Abstract:Legal rules encompass not only codified statutes but also implicit adjudicatory principles derived from precedents that contain discretionary norms, social morality, and policy. While computational legal research has advanced in applying established rules to cases, inducing legal rules from judicial decisions remains understudied, constrained by limitations in model inference efficacy and symbolic reasoning capability. The advent of Large Language Models (LLMs) offers unprecedented opportunities for automating the extraction of such latent principles, yet progress is stymied by the absence of formal task definitions, benchmark datasets, and methodologies. To address this gap, we formalize Legal Rule Induction (LRI) as the task of deriving concise, generalizable doctrinal rules from sets of analogous precedents, distilling their shared preconditions, normative behaviors, and legal consequences. We introduce the first LRI benchmark, comprising 5,121 case sets (38,088 Chinese cases in total) for model tuning and 216 expert-annotated gold test sets. Experimental results reveal that: 1) State-of-the-art LLMs struggle with over-generalization and hallucination; 2) Training on our dataset markedly enhances LLMs capabilities in capturing nuanced rule patterns across similar cases.
Abstract:While Large Language Models (LLMs) exhibit remarkable capabilities, they also introduce significant safety and privacy risks. Current mitigation strategies often fail to preserve contextual reasoning capabilities in risky scenarios. Instead, they rely heavily on sensitive pattern matching to protect LLMs, which limits the scope. Furthermore, they overlook established safety and privacy standards, leading to systemic risks for legal compliance. To address these gaps, we formulate safety and privacy issues into contextualized compliance problems following the Contextual Integrity (CI) theory. Under the CI framework, we align our model with three critical regulatory standards: GDPR, EU AI Act, and HIPAA. Specifically, we employ reinforcement learning (RL) with a rule-based reward to incentivize contextual reasoning capabilities while enhancing compliance with safety and privacy norms. Through extensive experiments, we demonstrate that our method not only significantly enhances legal compliance (achieving a +17.64% accuracy improvement in safety/privacy benchmarks) but also further improves general reasoning capability. For OpenThinker-7B, a strong reasoning model that significantly outperforms its base model Qwen2.5-7B-Instruct across diverse subjects, our method enhances its general reasoning capabilities, with +2.05% and +8.98% accuracy improvement on the MMLU and LegalBench benchmark, respectively.
Abstract:Autonomous AI is no longer a hard-to-reach concept, it enables the agents to move beyond executing tasks to independently addressing complex problems, adapting to change while handling the uncertainty of the environment. However, what makes the agents truly autonomous? It is agentic reasoning, that is crucial for foundation models to develop symbolic logic, statistical correlations, or large-scale pattern recognition to process information, draw inferences, and make decisions. However, it remains unclear why and how existing agentic reasoning approaches work, in comparison to biological reasoning, which instead is deeply rooted in neural mechanisms involving hierarchical cognition, multimodal integration, and dynamic interactions. In this work, we propose a novel neuroscience-inspired framework for agentic reasoning. Grounded in three neuroscience-based definitions and supported by mathematical and biological foundations, we propose a unified framework modeling reasoning from perception to action, encompassing four core types, perceptual, dimensional, logical, and interactive, inspired by distinct functional roles observed in the human brain. We apply this framework to systematically classify and analyze existing AI reasoning methods, evaluating their theoretical foundations, computational designs, and practical limitations. We also explore its implications for building more generalizable, cognitively aligned agents in physical and virtual environments. Finally, building on our framework, we outline future directions and propose new neural-inspired reasoning methods, analogous to chain-of-thought prompting. By bridging cognitive neuroscience and AI, this work offers a theoretical foundation and practical roadmap for advancing agentic reasoning in intelligent systems. The associated project can be found at: https://github.com/BioRAILab/Awesome-Neuroscience-Agent-Reasoning .