Abstract:Graph representation learning (GRL) aims to encode structural and semantic dependencies of graph-structured data into low-dimensional embeddings. However, existing GRL methods often rely on surrogate contrastive objectives or mutual information maximization, which typically demand complex architectures, negative sampling strategies, and sensitive hyperparameter tuning. These design choices may induce over-smoothing, over-squashing, and training instability. In this work, we propose HyperGRL, a unified framework for hyperspherical graph representation learning via adaptive neighbor-mean alignment and sampling-free uniformity. HyperGRL embeds nodes on a unit hypersphere through two adversarially coupled objectives: neighbor-mean alignment and sampling-free uniformity. The alignment objective uses the mean representation of each node's local neighborhood to construct semantically grounded, stable targets that capture shared structural and feature patterns. The uniformity objective formulates dispersion via an L2-based hyperspherical regularization, encouraging globally uniform embedding distributions while preserving discriminative information. To further stabilize training, we introduce an entropy-guided adaptive balancing mechanism that dynamically regulates the interplay between alignment and uniformity without requiring manual tuning. Extensive experiments on node classification, node clustering, and link prediction demonstrate that HyperGRL delivers superior representation quality and generalization across diverse graph structures, achieving average improvements of 1.49%, 0.86%, and 0.74% over the strongest existing methods, respectively. These findings highlight the effectiveness of geometrically grounded, sampling-free contrastive objectives for graph representation learning.
Abstract:Recent advances in Text-to-Image (T2I) generative models, such as Imagen, Stable Diffusion, and FLUX, have led to remarkable improvements in visual quality. However, their performance is fundamentally limited by the quality of training data. Web-crawled and synthetic image datasets often contain low-quality or redundant samples, which lead to degraded visual fidelity, unstable training, and inefficient computation. Hence, effective data selection is crucial for improving data efficiency. Existing approaches rely on costly manual curation or heuristic scoring based on single-dimensional features in Text-to-Image data filtering. Although meta-learning based method has been explored in LLM, there is no adaptation for image modalities. To this end, we propose **Alchemist**, a meta-gradient-based framework to select a suitable subset from large-scale text-image data pairs. Our approach automatically learns to assess the influence of each sample by iteratively optimizing the model from a data-centric perspective. Alchemist consists of two key stages: data rating and data pruning. We train a lightweight rater to estimate each sample's influence based on gradient information, enhanced with multi-granularity perception. We then use the Shift-Gsampling strategy to select informative subsets for efficient model training. Alchemist is the first automatic, scalable, meta-gradient-based data selection framework for Text-to-Image model training. Experiments on both synthetic and web-crawled datasets demonstrate that Alchemist consistently improves visual quality and downstream performance. Training on an Alchemist-selected 50% of the data can outperform training on the full dataset.
Abstract:World models have emerged as a pivotal component in robot manipulation planning, enabling agents to predict future environmental states and reason about the consequences of actions before execution. While video-generation models are increasingly adopted, they often lack rigorous physical grounding, leading to hallucinations and a failure to maintain consistency in long-horizon physical constraints. To address these limitations, we propose Embodied Tree of Thoughts (EToT), a novel Real2Sim2Real planning framework that leverages a physics-based interactive digital twin as an embodied world model. EToT formulates manipulation planning as a tree search expanded through two synergistic mechanisms: (1) Priori Branching, which generates diverse candidate execution paths based on semantic and spatial analysis; and (2) Reflective Branching, which utilizes VLMs to diagnose execution failures within the simulator and iteratively refine the planning tree with corrective actions. By grounding high-level reasoning in a physics simulator, our framework ensures that generated plans adhere to rigid-body dynamics and collision constraints. We validate EToT on a suite of short- and long-horizon manipulation tasks, where it consistently outperforms baselines by effectively predicting physical dynamics and adapting to potential failures. Website at https://embodied-tree-of-thoughts.github.io .
Abstract:Current multi-modal image fusion methods typically rely on task-specific models, leading to high training costs and limited scalability. While generative methods provide a unified modeling perspective, they often suffer from slow inference due to the complex sampling trajectories from noise to image. To address this, we formulate image fusion as a direct probabilistic transport from source modalities to the fused image distribution, leveraging the flow matching paradigm to improve sampling efficiency and structural consistency. To mitigate the lack of high-quality fused images for supervision, we collect fusion results from multiple state-of-the-art models as priors, and employ a task-aware selection function to select the most reliable pseudo-labels for each task. We further introduce a Fusion Refiner module that employs a divide-and-conquer strategy to systematically identify, decompose, and enhance degraded components in selected pseudo-labels. For multi-task scenarios, we integrate elastic weight consolidation and experience replay mechanisms to preserve cross-task performance and enhance continual learning ability from both parameter stability and memory retention perspectives. Our approach achieves competitive performance across diverse fusion tasks, while significantly improving sampling efficiency and maintaining a lightweight model design. The code will be available at: https://github.com/Ist-Zhy/FusionFM.
Abstract:Handheld devices have opened up unprecedented opportunities to collect large-scale, high-quality demonstrations efficiently. However, existing systems often lack robust tactile sensing or reliable pose tracking to handle complex interaction scenarios, especially for bimanual and contact-rich tasks. In this work, we propose ViTaMIn-B, a more capable and efficient handheld data collection system for such tasks. We first design DuoTact, a novel compliant visuo-tactile sensor built with a flexible frame to withstand large contact forces during manipulation while capturing high-resolution contact geometry. To enhance the cross-sensor generalizability, we propose reconstructing the sensor's global deformation as a 3D point cloud and using it as the policy input. We further develop a robust, unified 6-DoF bimanual pose acquisition process using Meta Quest controllers, which eliminates the trajectory drift issue in common SLAM-based methods. Comprehensive user studies confirm the efficiency and high usability of ViTaMIn-B among novice and expert operators. Furthermore, experiments on four bimanual manipulation tasks demonstrate its superior task performance relative to existing systems.




Abstract:Hallucination remains a critical barrier for deploying large language models (LLMs) in reliability-sensitive applications. Existing detection methods largely fall into two categories: factuality checking, which is fundamentally constrained by external knowledge coverage, and static hidden-state analysis, that fails to capture deviations in reasoning dynamics. As a result, their effectiveness and robustness remain limited. We propose HSAD (Hidden Signal Analysis-based Detection), a novel hallucination detection framework that models the temporal dynamics of hidden representations during autoregressive generation. HSAD constructs hidden-layer signals by sampling activations across layers, applies Fast Fourier Transform (FFT) to obtain frequency-domain representations, and extracts the strongest non-DC frequency component as spectral features. Furthermore, by leveraging the autoregressive nature of LLMs, HSAD identifies optimal observation points for effective and reliable detection. Across multiple benchmarks, including TruthfulQA, HSAD achieves over 10 percentage points improvement compared to prior state-of-the-art methods. By integrating reasoning-process modeling with frequency-domain analysis, HSAD establishes a new paradigm for robust hallucination detection in LLMs.
Abstract:The task of synthesizing novel views from a single image is highly ill-posed due to multiple explanations for unobserved areas. Most current methods tend to generate unseen regions from ambiguity priors and interpolation near input views, which often lead to severe distortions. To address this limitation, we propose a novel model dubbed as UniView, which can leverage reference images from a similar object to provide strong prior information during view synthesis. More specifically, we construct a retrieval and augmentation system and employ a multimodal large language model (MLLM) to assist in selecting reference images that meet our requirements. Additionally, a plug-and-play adapter module with multi-level isolation layers is introduced to dynamically generate reference features for the target views. Moreover, in order to preserve the details of an original input image, we design a decoupled triple attention mechanism, which can effectively align and integrate multi-branch features into the synthesis process. Extensive experiments have demonstrated that our UniView significantly improves novel view synthesis performance and outperforms state-of-the-art methods on the challenging datasets.
Abstract:Text-to-image (T2I) generation aims to synthesize images from textual prompts, which jointly specify what must be shown and imply what can be inferred, thereby corresponding to two core capabilities: composition and reasoning. However, with the emerging advances of T2I models in reasoning beyond composition, existing benchmarks reveal clear limitations in providing comprehensive evaluations across and within these capabilities. Meanwhile, these advances also enable models to handle more complex prompts, whereas current benchmarks remain limited to low scene density and simplified one-to-one reasoning. To address these limitations, we propose T2I-CoReBench, a comprehensive and complex benchmark that evaluates both composition and reasoning capabilities of T2I models. To ensure comprehensiveness, we structure composition around scene graph elements (instance, attribute, and relation) and reasoning around the philosophical framework of inference (deductive, inductive, and abductive), formulating a 12-dimensional evaluation taxonomy. To increase complexity, driven by the inherent complexities of real-world scenarios, we curate each prompt with high compositional density for composition and multi-step inference for reasoning. We also pair each prompt with a checklist that specifies individual yes/no questions to assess each intended element independently to facilitate fine-grained and reliable evaluation. In statistics, our benchmark comprises 1,080 challenging prompts and around 13,500 checklist questions. Experiments across 27 current T2I models reveal that their composition capability still remains limited in complex high-density scenarios, while the reasoning capability lags even further behind as a critical bottleneck, with all models struggling to infer implicit elements from prompts. Our project page: https://t2i-corebench.github.io/.
Abstract:This paper presents a novel fabric-based thermal-haptic interface for virtual reality and teleoperation. It integrates pneumatic actuation and conductive fabric with an innovative ultra-lightweight design, achieving only 2~g for each finger unit. By embedding heating elements within textile pneumatic chambers, the system delivers modulated pressure and thermal stimuli to fingerpads through a fully soft, wearable interface. Comprehensive characterization demonstrates rapid thermal modulation with heating rates up to 3$^{\circ}$C/s, enabling dynamic thermal feedback for virtual or teleoperation interactions. The pneumatic subsystem generates forces up to 8.93~N at 50~kPa, while optimization of fingerpad-actuator clearance enhances cooling efficiency with minimal force reduction. Experimental validation conducted with two different user studies shows high temperature identification accuracy (0.98 overall) across three thermal levels, and significant manipulation improvements in a virtual pick-and-place tasks. Results show enhanced success rates (88.5\% to 96.4\%, p = 0.029) and improved force control precision (p = 0.013) when haptic feedback is enabled, validating the effectiveness of the integrated thermal-haptic approach for advanced human-machine interaction applications.




Abstract:3D local editing of specified regions is crucial for game industry and robot interaction. Recent methods typically edit rendered multi-view images and then reconstruct 3D models, but they face challenges in precisely preserving unedited regions and overall coherence. Inspired by structured 3D generative models, we propose VoxHammer, a novel training-free approach that performs precise and coherent editing in 3D latent space. Given a 3D model, VoxHammer first predicts its inversion trajectory and obtains its inverted latents and key-value tokens at each timestep. Subsequently, in the denoising and editing phase, we replace the denoising features of preserved regions with the corresponding inverted latents and cached key-value tokens. By retaining these contextual features, this approach ensures consistent reconstruction of preserved areas and coherent integration of edited parts. To evaluate the consistency of preserved regions, we constructed Edit3D-Bench, a human-annotated dataset comprising hundreds of samples, each with carefully labeled 3D editing regions. Experiments demonstrate that VoxHammer significantly outperforms existing methods in terms of both 3D consistency of preserved regions and overall quality. Our method holds promise for synthesizing high-quality edited paired data, thereby laying the data foundation for in-context 3D generation. See our project page at https://huanngzh.github.io/VoxHammer-Page/.