Abstract:We present UniTEX, a novel two-stage 3D texture generation framework to create high-quality, consistent textures for 3D assets. Existing approaches predominantly rely on UV-based inpainting to refine textures after reprojecting the generated multi-view images onto the 3D shapes, which introduces challenges related to topological ambiguity. To address this, we propose to bypass the limitations of UV mapping by operating directly in a unified 3D functional space. Specifically, we first propose that lifts texture generation into 3D space via Texture Functions (TFs)--a continuous, volumetric representation that maps any 3D point to a texture value based solely on surface proximity, independent of mesh topology. Then, we propose to predict these TFs directly from images and geometry inputs using a transformer-based Large Texturing Model (LTM). To further enhance texture quality and leverage powerful 2D priors, we develop an advanced LoRA-based strategy for efficiently adapting large-scale Diffusion Transformers (DiTs) for high-quality multi-view texture synthesis as our first stage. Extensive experiments demonstrate that UniTEX achieves superior visual quality and texture integrity compared to existing approaches, offering a generalizable and scalable solution for automated 3D texture generation. Code will available in: https://github.com/YixunLiang/UniTEX.
Abstract:While generative artificial intelligence has advanced significantly across text, image, audio, and video domains, 3D generation remains comparatively underdeveloped due to fundamental challenges such as data scarcity, algorithmic limitations, and ecosystem fragmentation. To this end, we present Step1X-3D, an open framework addressing these challenges through: (1) a rigorous data curation pipeline processing >5M assets to create a 2M high-quality dataset with standardized geometric and textural properties; (2) a two-stage 3D-native architecture combining a hybrid VAE-DiT geometry generator with an diffusion-based texture synthesis module; and (3) the full open-source release of models, training code, and adaptation modules. For geometry generation, the hybrid VAE-DiT component produces TSDF representations by employing perceiver-based latent encoding with sharp edge sampling for detail preservation. The diffusion-based texture synthesis module then ensures cross-view consistency through geometric conditioning and latent-space synchronization. Benchmark results demonstrate state-of-the-art performance that exceeds existing open-source methods, while also achieving competitive quality with proprietary solutions. Notably, the framework uniquely bridges the 2D and 3D generation paradigms by supporting direct transfer of 2D control techniques~(e.g., LoRA) to 3D synthesis. By simultaneously advancing data quality, algorithmic fidelity, and reproducibility, Step1X-3D aims to establish new standards for open research in controllable 3D asset generation.
Abstract:In machine learning, quantization is widely used to simplify data representation and facilitate algorithm deployment on hardware. Given the fundamental role of classification in machine learning, it is crucial to investigate the impact of quantization on classification. Current research primarily focuses on quantization errors, operating under the premise that higher quantization errors generally result in lower classification performance. However, this premise lacks a solid theoretical foundation and often contradicts empirical findings. For instance, certain extremely low bit-width quantization methods, such as $\{0,1\}$-binary quantization and $\{0, \pm1\}$-ternary quantization, can achieve comparable or even superior classification accuracy compared to the original non-quantized data, despite exhibiting high quantization errors. To more accurately evaluate classification performance, we propose to directly investigate the feature discrimination of quantized data, instead of analyzing its quantization error. Interestingly, it is found that both binary and ternary quantization methods can improve, rather than degrade, the feature discrimination of the original data. This remarkable performance is validated through classification experiments across various data types, including images, speech, and texts.
Abstract:Reinforcement Learning from Human Feedback (RLHF) is commonly employed to tailor models to human preferences, especially to improve the safety of outputs from large language models (LLMs). Traditionally, this method depends on selecting preferred responses from pairs. However, due to the variability in human opinions and the challenges in directly comparing two responses, there is an increasing trend towards fine-grained annotation approaches that evaluate responses using multiple targeted metrics or rules. The challenge lies in efficiently choosing and applying these rules to handle the diverse range of preference data. In this paper, we propose a dynamic method that adaptively selects the most important rules for each response pair. We introduce a mathematical framework that utilizes the maximum discrepancy across paired responses and demonstrate theoretically that this approach maximizes the mutual information between the rule-based annotations and the underlying true preferences. We then train an 8B reward model using this adaptively labeled preference dataset and assess its efficacy using RewardBench. As of January 25, 2025, our model achieved the highest safety performance on the leaderboard, surpassing various larger models.
Abstract:Large language models (LLMs) have revolutionized scientific research with their exceptional capabilities and transformed various fields. Among their practical applications, LLMs have been playing a crucial role in mitigating threats to human life, infrastructure, and the environment. Despite growing research in disaster LLMs, there remains a lack of systematic review and in-depth analysis of LLMs for natural disaster management. To address the gap, this paper presents a comprehensive survey of existing LLMs in natural disaster management, along with a taxonomy that categorizes existing works based on disaster phases and application scenarios. By collecting public datasets and identifying key challenges and opportunities, this study aims to guide the professional community in developing advanced LLMs for disaster management to enhance the resilience against natural disasters.
Abstract:Recent 3D content generation pipelines commonly employ Variational Autoencoders (VAEs) to encode shapes into compact latent representations for diffusion-based generation. However, the widely adopted uniform point sampling strategy in Shape VAE training often leads to a significant loss of geometric details, limiting the quality of shape reconstruction and downstream generation tasks. We present Dora-VAE, a novel approach that enhances VAE reconstruction through our proposed sharp edge sampling strategy and a dual cross-attention mechanism. By identifying and prioritizing regions with high geometric complexity during training, our method significantly improves the preservation of fine-grained shape features. Such sampling strategy and the dual attention mechanism enable the VAE to focus on crucial geometric details that are typically missed by uniform sampling approaches. To systematically evaluate VAE reconstruction quality, we additionally propose Dora-bench, a benchmark that quantifies shape complexity through the density of sharp edges, introducing a new metric focused on reconstruction accuracy at these salient geometric features. Extensive experiments on the Dora-bench demonstrate that Dora-VAE achieves comparable reconstruction quality to the state-of-the-art dense XCube-VAE while requiring a latent space at least 8$\times$ smaller (1,280 vs. > 10,000 codes). We will release our code and benchmark dataset to facilitate future research in 3D shape modeling.
Abstract:Despite recent advancements in the Large Reconstruction Model (LRM) demonstrating impressive results, when extending its input from single image to multiple images, it exhibits inefficiencies, subpar geometric and texture quality, as well as slower convergence speed than expected. It is attributed to that, LRM formulates 3D reconstruction as a naive images-to-3D translation problem, ignoring the strong 3D coherence among the input images. In this paper, we propose a Multi-view Large Reconstruction Model (M-LRM) designed to efficiently reconstruct high-quality 3D shapes from multi-views in a 3D-aware manner. Specifically, we introduce a multi-view consistent cross-attention scheme to enable M-LRM to accurately query information from the input images. Moreover, we employ the 3D priors of the input multi-view images to initialize the tri-plane tokens. Compared to LRM, the proposed M-LRM can produce a tri-plane NeRF with $128 \times 128$ resolution and generate 3D shapes of high fidelity. Experimental studies demonstrate that our model achieves a significant performance gain and faster training convergence than LRM. Project page: https://murphylmf.github.io/M-LRM/
Abstract:We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
Abstract:Robustness to malicious attacks is of paramount importance for distributed learning. Existing works often consider the classical Byzantine attacks model, which assumes that some workers can send arbitrarily malicious messages to the server and disturb the aggregation steps of the distributed learning process. To defend against such worst-case Byzantine attacks, various robust aggregators have been proven effective and much superior to the often-used mean aggregator. In this paper, we show that robust aggregators are too conservative for a class of weak but practical malicious attacks, as known as label poisoning attacks, where the sample labels of some workers are poisoned. Surprisingly, we are able to show that the mean aggregator is more robust than the state-of-the-art robust aggregators in theory, given that the distributed data are sufficiently heterogeneous. In fact, the learning error of the mean aggregator is proven to be optimal in order. Experimental results corroborate our theoretical findings, demonstrating the superiority of the mean aggregator under label poisoning attacks.
Abstract:Animatable 3D reconstruction has significant applications across various fields, primarily relying on artists' handcraft creation. Recently, some studies have successfully constructed animatable 3D models from monocular videos. However, these approaches require sufficient view coverage of the object within the input video and typically necessitate significant time and computational costs for training and rendering. This limitation restricts the practical applications. In this work, we propose a method to build animatable 3D Gaussian Splatting from monocular video with diffusion priors. The 3D Gaussian representations significantly accelerate the training and rendering process, and the diffusion priors allow the method to learn 3D models with limited viewpoints. We also present the rigid regularization to enhance the utilization of the priors. We perform an extensive evaluation across various real-world videos, demonstrating its superior performance compared to the current state-of-the-art methods.