Alert button
Picture for Lu Sheng

Lu Sheng

Alert button

ChEF: A Comprehensive Evaluation Framework for Standardized Assessment of Multimodal Large Language Models

Nov 05, 2023
Zhelun Shi, Zhipin Wang, Hongxing Fan, Zhenfei Yin, Lu Sheng, Yu Qiao, Jing Shao

Multimodal Large Language Models (MLLMs) have shown impressive abilities in interacting with visual content with myriad potential downstream tasks. However, even though a list of benchmarks has been proposed, the capabilities and limitations of MLLMs are still not comprehensively understood, due to a lack of a standardized and holistic evaluation framework. To this end, we present the first Comprehensive Evaluation Framework (ChEF) that can holistically profile each MLLM and fairly compare different MLLMs. First, we structure ChEF as four modular components, i.e., Scenario as scalable multimodal datasets, Instruction as flexible instruction retrieving formulae, Inferencer as reliable question answering strategies, and Metric as indicative task-specific score functions. Based on them, ChEF facilitates versatile evaluations in a standardized framework, and new evaluations can be built by designing new Recipes (systematic selection of these four components). Notably, current MLLM benchmarks can be readily summarized as recipes of ChEF. Second, we introduce 6 new recipes to quantify competent MLLMs' desired capabilities (or called desiderata, i.e., calibration, in-context learning, instruction following, language performance, hallucination, and robustness) as reliable agents that can perform real-world multimodal interactions. Third, we conduct a large-scale evaluation of 9 prominent MLLMs on 9 scenarios and 6 desiderata. Our evaluation summarized over 20 valuable observations concerning the generalizability of MLLMs across various scenarios and the composite capability of MLLMs required for multimodal interactions. We will publicly release all the detailed implementations for further analysis, as well as an easy-to-use modular toolkit for the integration of new recipes and models, so that ChEF can be a growing evaluation framework for the MLLM community.

* 39 pages, 26 figures 
Viaarxiv icon

Octavius: Mitigating Task Interference in MLLMs via MoE

Nov 05, 2023
Zeren Chen, Ziqin Wang, Zhen Wang, Huayang Liu, Zhenfei Yin, Si Liu, Lu Sheng, Wanli Ouyang, Yu Qiao, Jing Shao

Recent studies have demonstrated Large Language Models (LLMs) can extend their zero-shot generalization capabilities to multimodal learning through instruction tuning. As more modalities and downstream tasks are introduced, negative conflicts and interference may have a worse impact on performance. While this phenomenon has been overlooked in previous work, we propose a novel and extensible framework, called \mname, for comprehensive studies and experimentation on multimodal learning with Multimodal Large Language Models (MLLMs). Specifically, we combine the well-known Mixture-of-Experts (MoE) and one of the representative PEFT techniques, \emph{i.e.,} LoRA, designing a novel LLM-based decoder, called LoRA-MoE, for multimodal learning. The experimental results (about 20\% improvement) have shown the effectiveness and versatility of our design in various 2D and 3D downstream tasks. Code and corresponding dataset will be available soon.

* 20 pages, 11 figures 
Viaarxiv icon

Stable Diffusion Reference Only: Image Prompt and Blueprint Jointly Guided Multi-Condition Diffusion Model for Secondary Painting

Nov 04, 2023
Hao Ai, Lu Sheng

Stable Diffusion and ControlNet have achieved excellent results in the field of image generation and synthesis. However, due to the granularity and method of its control, the efficiency improvement is limited for professional artistic creations such as comics and animation production whose main work is secondary painting. In the current workflow, fixing characters and image styles often need lengthy text prompts, and even requires further training through TextualInversion, DreamBooth or other methods, which is very complicated and expensive for painters. Therefore, we present a new method in this paper, Stable Diffusion Reference Only, a images-to-image self-supervised model that uses only two types of conditional images for precise control generation to accelerate secondary painting. The first type of conditional image serves as an image prompt, supplying the necessary conceptual and color information for generation. The second type is blueprint image, which controls the visual structure of the generated image. It is natively embedded into the original UNet, eliminating the need for ControlNet. We released all the code for the module and pipeline, and trained a controllable character line art coloring model at https://github.com/aihao2000/stable-diffusion-reference-only, that achieved state-of-the-art results in this field. This verifies the effectiveness of the structure and greatly improves the production efficiency of animations, comics, and fanworks.

Viaarxiv icon

Diffusion Model is Secretly a Training-free Open Vocabulary Semantic Segmenter

Sep 06, 2023
Jinglong Wang, Xiawei Li, Jing Zhang, Qingyuan Xu, Qin Zhou, Qian Yu, Lu Sheng, Dong Xu

Recent research has explored the utilization of pre-trained text-image discriminative models, such as CLIP, to tackle the challenges associated with open-vocabulary semantic segmentation. However, it is worth noting that the alignment process based on contrastive learning employed by these models may unintentionally result in the loss of crucial localization information and object completeness, which are essential for achieving accurate semantic segmentation. More recently, there has been an emerging interest in extending the application of diffusion models beyond text-to-image generation tasks, particularly in the domain of semantic segmentation. These approaches utilize diffusion models either for generating annotated data or for extracting features to facilitate semantic segmentation. This typically involves training segmentation models by generating a considerable amount of synthetic data or incorporating additional mask annotations. To this end, we uncover the potential of generative text-to-image conditional diffusion models as highly efficient open-vocabulary semantic segmenters, and introduce a novel training-free approach named DiffSegmenter. Specifically, by feeding an input image and candidate classes into an off-the-shelf pre-trained conditional latent diffusion model, the cross-attention maps produced by the denoising U-Net are directly used as segmentation scores, which are further refined and completed by the followed self-attention maps. Additionally, we carefully design effective textual prompts and a category filtering mechanism to further enhance the segmentation results. Extensive experiments on three benchmark datasets show that the proposed DiffSegmenter achieves impressive results for open-vocabulary semantic segmentation.

Viaarxiv icon

Distortion-aware Transformer in 360° Salient Object Detection

Aug 07, 2023
Yinjie Zhao, Lichen Zhao, Qian Yu, Jing Zhang, Lu Sheng, Dong Xu

Figure 1 for Distortion-aware Transformer in 360° Salient Object Detection
Figure 2 for Distortion-aware Transformer in 360° Salient Object Detection
Figure 3 for Distortion-aware Transformer in 360° Salient Object Detection
Figure 4 for Distortion-aware Transformer in 360° Salient Object Detection

With the emergence of VR and AR, 360{\deg} data attracts increasing attention from the computer vision and multimedia communities. Typically, 360{\deg} data is projected into 2D ERP (equirectangular projection) images for feature extraction. However, existing methods cannot handle the distortions that result from the projection, hindering the development of 360-data-based tasks. Therefore, in this paper, we propose a Transformer-based model called DATFormer to address the distortion problem. We tackle this issue from two perspectives. Firstly, we introduce two distortion-adaptive modules. The first is a Distortion Mapping Module, which guides the model to pre-adapt to distorted features globally. The second module is a Distortion-Adaptive Attention Block that reduces local distortions on multi-scale features. Secondly, to exploit the unique characteristics of 360{\deg} data, we present a learnable relation matrix and use it as part of the positional embedding to further improve performance. Extensive experiments are conducted on three public datasets, and the results show that our model outperforms existing 2D SOD (salient object detection) and 360 SOD methods.

* 10 pages, 5 figures 
Viaarxiv icon

LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and Benchmark

Jun 18, 2023
Zhenfei Yin, Jiong Wang, Jianjian Cao, Zhelun Shi, Dingning Liu, Mukai Li, Lu Sheng, Lei Bai, Xiaoshui Huang, Zhiyong Wang, Jing Shao, Wanli Ouyang

Figure 1 for LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and Benchmark
Figure 2 for LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and Benchmark
Figure 3 for LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and Benchmark
Figure 4 for LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and Benchmark

Large language models have become a potential pathway toward achieving artificial general intelligence. Recent works on multi-modal large language models have demonstrated their effectiveness in handling visual modalities. In this work, we extend the research of MLLMs to point clouds and present the LAMM-Dataset and LAMM-Benchmark for 2D image and 3D point cloud understanding. We also establish an extensible framework to facilitate the extension of MLLMs to additional modalities. Our main contribution is three-fold: 1) We present the LAMM-Dataset and LAMM-Benchmark, which cover almost all high-level vision tasks for 2D and 3D vision. Extensive experiments validate the effectiveness of our dataset and benchmark. 2) We demonstrate the detailed methods of constructing instruction-tuning datasets and benchmarks for MLLMs, which will enable future research on MLLMs to scale up and extend to other domains, tasks, and modalities faster. 3) We provide a primary but potential MLLM training framework optimized for modalities' extension. We also provide baseline models, comprehensive experimental observations, and analysis to accelerate future research. Codes and datasets are now available at https://github.com/OpenLAMM/LAMM.

* 37 pages, 33 figures. Code available at https://github.com/OpenLAMM/LAMM ; Project page: https://openlamm.github.io/ 
Viaarxiv icon

Siamese DETR

Mar 31, 2023
Zeren Chen, Gengshi Huang, Wei Li, Jianing Teng, Kun Wang, Jing Shao, Chen Change Loy, Lu Sheng

Figure 1 for Siamese DETR
Figure 2 for Siamese DETR
Figure 3 for Siamese DETR
Figure 4 for Siamese DETR

Recent self-supervised methods are mainly designed for representation learning with the base model, e.g., ResNets or ViTs. They cannot be easily transferred to DETR, with task-specific Transformer modules. In this work, we present Siamese DETR, a Siamese self-supervised pretraining approach for the Transformer architecture in DETR. We consider learning view-invariant and detection-oriented representations simultaneously through two complementary tasks, i.e., localization and discrimination, in a novel multi-view learning framework. Two self-supervised pretext tasks are designed: (i) Multi-View Region Detection aims at learning to localize regions-of-interest between augmented views of the input, and (ii) Multi-View Semantic Discrimination attempts to improve object-level discrimination for each region. The proposed Siamese DETR achieves state-of-the-art transfer performance on COCO and PASCAL VOC detection using different DETR variants in all setups. Code is available at https://github.com/Zx55/SiameseDETR.

* 10 pages, 11 figures. Accepted in CVPR 2023 
Viaarxiv icon

VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud

Mar 25, 2023
Ziqin Wang, Bowen Cheng, Lichen Zhao, Dong Xu, Yang Tang, Lu Sheng

Figure 1 for VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud
Figure 2 for VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud
Figure 3 for VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud
Figure 4 for VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud

The task of 3D semantic scene graph (3DSSG) prediction in the point cloud is challenging since (1) the 3D point cloud only captures geometric structures with limited semantics compared to 2D images, and (2) long-tailed relation distribution inherently hinders the learning of unbiased prediction. Since 2D images provide rich semantics and scene graphs are in nature coped with languages, in this study, we propose Visual-Linguistic Semantics Assisted Training (VL-SAT) scheme that can significantly empower 3DSSG prediction models with discrimination about long-tailed and ambiguous semantic relations. The key idea is to train a powerful multi-modal oracle model to assist the 3D model. This oracle learns reliable structural representations based on semantics from vision, language, and 3D geometry, and its benefits can be heterogeneously passed to the 3D model during the training stage. By effectively utilizing visual-linguistic semantics in training, our VL-SAT can significantly boost common 3DSSG prediction models, such as SGFN and SGGpoint, only with 3D inputs in the inference stage, especially when dealing with tail relation triplets. Comprehensive evaluations and ablation studies on the 3DSSG dataset have validated the effectiveness of the proposed scheme. Code is available at https://github.com/wz7in/CVPR2023-VLSAT.

* CVPR2023 Highlight 
Viaarxiv icon

Fast-BEV: A Fast and Strong Bird's-Eye View Perception Baseline

Jan 29, 2023
Yangguang Li, Bin Huang, Zeren Chen, Yufeng Cui, Feng Liang, Mingzhu Shen, Fenggang Liu, Enze Xie, Lu Sheng, Wanli Ouyang, Jing Shao

Figure 1 for Fast-BEV: A Fast and Strong Bird's-Eye View Perception Baseline
Figure 2 for Fast-BEV: A Fast and Strong Bird's-Eye View Perception Baseline
Figure 3 for Fast-BEV: A Fast and Strong Bird's-Eye View Perception Baseline
Figure 4 for Fast-BEV: A Fast and Strong Bird's-Eye View Perception Baseline

Recently, perception task based on Bird's-Eye View (BEV) representation has drawn more and more attention, and BEV representation is promising as the foundation for next-generation Autonomous Vehicle (AV) perception. However, most existing BEV solutions either require considerable resources to execute on-vehicle inference or suffer from modest performance. This paper proposes a simple yet effective framework, termed Fast-BEV , which is capable of performing faster BEV perception on the on-vehicle chips. Towards this goal, we first empirically find that the BEV representation can be sufficiently powerful without expensive transformer based transformation nor depth representation. Our Fast-BEV consists of five parts, We novelly propose (1) a lightweight deployment-friendly view transformation which fast transfers 2D image feature to 3D voxel space, (2) an multi-scale image encoder which leverages multi-scale information for better performance, (3) an efficient BEV encoder which is particularly designed to speed up on-vehicle inference. We further introduce (4) a strong data augmentation strategy for both image and BEV space to avoid over-fitting, (5) a multi-frame feature fusion mechanism to leverage the temporal information. Through experiments, on 2080Ti platform, our R50 model can run 52.6 FPS with 47.3% NDS on the nuScenes validation set, exceeding the 41.3 FPS and 47.5% NDS of the BEVDepth-R50 model and 30.2 FPS and 45.7% NDS of the BEVDet4D-R50 model. Our largest model (R101@900x1600) establishes a competitive 53.5% NDS on the nuScenes validation set. We further develop a benchmark with considerable accuracy and efficiency on current popular on-vehicle chips. The code is released at: https://github.com/Sense-GVT/Fast-BEV.

* submitted to TPAMI. arXiv admin note: substantial text overlap with arXiv:2301.07870 
Viaarxiv icon