Abstract:Multimodal medical image fusion (MMIF) aims to integrate images from different modalities to produce a comprehensive image that enhances medical diagnosis by accurately depicting organ structures, tissue textures, and metabolic information. Capturing both the unique and complementary information across multiple modalities simultaneously is a key research challenge in MMIF. To address this challenge, this paper proposes a novel image fusion method, MMIF-AMIN, which features a new architecture that can effectively extract these unique and complementary features. Specifically, an Invertible Dense Network (IDN) is employed for lossless feature extraction from individual modalities. To extract complementary information between modalities, a Multi-scale Complementary Feature Extraction Module (MCFEM) is designed, which incorporates a hybrid attention mechanism, convolutional layers of varying sizes, and Transformers. An adaptive loss function is introduced to guide model learning, addressing the limitations of traditional manually-designed loss functions and enhancing the depth of data mining. Extensive experiments demonstrate that MMIF-AMIN outperforms nine state-of-the-art MMIF methods, delivering superior results in both quantitative and qualitative analyses. Ablation experiments confirm the effectiveness of each component of the proposed method. Additionally, extending MMIF-AMIN to other image fusion tasks also achieves promising performance.
Abstract:In this paper, a novel covert semantic communication framework is investigated. Within this framework, a server extracts and transmits the semantic information, i.e., the meaning of image data, to a user over several time slots. An attacker seeks to detect and eavesdrop the semantic transmission to acquire details of the original image. To avoid data meaning being eavesdropped by an attacker, a friendly jammer is deployed to transmit jamming signals to interfere the attacker so as to hide the transmitted semantic information. Meanwhile, the server will strategically select time slots for semantic information transmission. Due to limited energy, the jammer will not communicate with the server and hence the server does not know the transmit power of the jammer. Therefore, the server must jointly optimize the semantic information transmitted at each time slot and the corresponding transmit power to maximize the privacy and the semantic information transmission quality of the user. To solve this problem, we propose a prioritised sampling assisted twin delayed deep deterministic policy gradient algorithm to jointly determine the transmitted semantic information and the transmit power per time slot without the communications between the server and the jammer. Compared to standard reinforcement learning methods, the propose method uses an additional Q network to estimate Q values such that the agent can select the action with a lower Q value from the two Q networks thus avoiding local optimal action selection and estimation bias of Q values. Simulation results show that the proposed algorithm can improve the privacy and the semantic information transmission quality by up to 77.8% and 14.3% compared to the traditional reinforcement learning methods.
Abstract:Recommender systems are among the most impactful applications of artificial intelligence, serving as critical infrastructure connecting users, merchants, and platforms. However, most current industrial systems remain heavily reliant on historical co-occurrence patterns and log-fitting objectives, i.e., optimizing for past user interactions without explicitly modeling user intent. This log-fitting approach often leads to overfitting to narrow historical preferences, failing to capture users' evolving and latent interests. As a result, it reinforces filter bubbles and long-tail phenomena, ultimately harming user experience and threatening the sustainability of the whole recommendation ecosystem. To address these challenges, we rethink the overall design paradigm of recommender systems and propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline. By integrating large language models (LLMs) into key stages of user interest mining, item retrieval, and explanation generation, RecGPT transforms log-fitting recommendation into an intent-centric process. To effectively align general-purpose LLMs to the above domain-specific recommendation tasks at scale, RecGPT incorporates a multi-stage training paradigm, which integrates reasoning-enhanced pre-alignment and self-training evolution, guided by a Human-LLM cooperative judge system. Currently, RecGPT has been fully deployed on the Taobao App. Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders: users benefit from increased content diversity and satisfaction, merchants and the platform gain greater exposure and conversions. These comprehensive improvement results across all stakeholders validates that LLM-driven, intent-centric design can foster a more sustainable and mutually beneficial recommendation ecosystem.
Abstract:Statement autoformalization, the automated translation of statement from natural language into formal languages, has become a subject of extensive research, yet the development of robust automated evaluation metrics remains limited. Existing evaluation methods often lack semantic understanding, face challenges with high computational costs, and are constrained by the current progress of automated theorem proving. To address these issues, we propose GTED (Generalized Tree Edit Distance), a novel evaluation framework that first standardizes formal statements and converts them into operator trees, then determines the semantic similarity using the eponymous GTED metric. On the miniF2F and ProofNet benchmarks, GTED outperforms all baseline metrics by achieving the highest accuracy and Kappa scores, thus providing the community with a more faithful metric for automated evaluation. The code and experimental results are available at https://github.com/XiaoyangLiu-sjtu/GTED.
Abstract:Deep neural networks generate and process large volumes of data, posing challenges for low-resource embedded systems. In-memory computing has been demonstrated as an efficient computing infrastructure and shows promise for embedded AI applications. Among newly-researched memory technologies, racetrack memory is a non-volatile technology that allows high data density fabrication, making it a good fit for in-memory computing. However, integrating in-memory arithmetic circuits with memory cells affects both the memory density and power efficiency. It remains challenging to build efficient in-memory arithmetic circuits on racetrack memory within area and energy constraints. To this end, we present an efficient in-memory convolutional neural network (CNN) accelerator optimized for use with racetrack memory. We design a series of fundamental arithmetic circuits as in-memory computing cells suited for multiply-and-accumulate operations. Moreover, we explore the design space of racetrack memory based systems and CNN model architectures, employing co-design to improve the efficiency and performance of performing CNN inference in racetrack memory while maintaining model accuracy. Our designed circuits and model-system co-optimization strategies achieve a small memory bank area with significant improvements in energy and performance for racetrack memory based embedded systems.
Abstract:Quantum optimization is the most mature quantum computing technology to date, providing a promising approach towards efficiently solving complex combinatorial problems. Methods such as adiabatic quantum computing (AQC) have been employed in recent years on important optimization problems across various domains. In deep learning, deep neural networks (DNN) have reached immense sizes to support new predictive capabilities. Optimization of large-scale models is critical for sustainable deployment, but becomes increasingly challenging with ever-growing model sizes and complexity. While quantum optimization is suitable for solving complex problems, its application to DNN optimization is not straightforward, requiring thorough reformulation for compatibility with commercially available quantum devices. In this work, we explore the potential of adopting AQC for fine-grained pruning-quantization of convolutional neural networks. We rework established heuristics to formulate model compression as a quadratic unconstrained binary optimization (QUBO) problem, and assess the solution space offered by commercial quantum annealing devices. Through our exploratory efforts of reformulation, we demonstrate that AQC can achieve effective compression of practical DNN models. Experiments demonstrate that adiabatic quantum computing (AQC) not only outperforms classical algorithms like genetic algorithms and reinforcement learning in terms of time efficiency but also excels at identifying global optima.
Abstract:This paper investigates the sample dependence of critical points for neural networks. We introduce a sample-independent critical lifting operator that associates a parameter of one network with a set of parameters of another, thus defining sample-dependent and sample-independent lifted critical points. We then show by example that previously studied critical embeddings do not capture all sample-independent lifted critical points. Finally, we demonstrate the existence of sample-dependent lifted critical points for sufficiently large sample sizes and prove that saddles appear among them.
Abstract:Understanding the convergence points and optimization landscape of neural networks is crucial, particularly for homogeneous networks where Karush-Kuhn-Tucker (KKT) points of the associated maximum-margin problem often characterize solutions. This paper investigates the relationship between such KKT points across networks of different widths generated via neuron splitting. We introduce and formalize the \textbf{KKT point embedding principle}, establishing that KKT points of a homogeneous network's max-margin problem ($P_{\Phi}$) can be embedded into the KKT points of a larger network's problem ($P_{\tilde{\Phi}}$) via specific linear isometric transformations corresponding to neuron splitting. We rigorously prove this principle holds for neuron splitting in both two-layer and deep homogeneous networks. Furthermore, we connect this static embedding to the dynamics of gradient flow training with smooth losses. We demonstrate that trajectories initiated from appropriately mapped points remain mapped throughout training and that the resulting $\omega$-limit sets of directions are correspondingly mapped ($T(L(\theta(0))) = L(\boldsymbol{\eta}(0))$), thereby preserving the alignment with KKT directions dynamically when directional convergence occurs. Our findings offer insights into the effects of network width, parameter redundancy, and the structural connections between solutions found via optimization in homogeneous networks of varying sizes.
Abstract:This technical report introduces a targeted improvement to the StreamPETR framework, specifically aimed at enhancing velocity estimation, a critical factor influencing the overall NuScenes Detection Score. While StreamPETR exhibits strong 3D bounding box detection performance as reflected by its high mean Average Precision our analysis identified velocity estimation as a substantial bottleneck when evaluated on the NuScenes dataset. To overcome this limitation, we propose a customized positional embedding strategy tailored to enhance temporal modeling capabilities. Experimental evaluations conducted on the NuScenes test set demonstrate that our improved approach achieves a state-of-the-art NDS of 70.86% using the ViT-L backbone, setting a new benchmark for camera-only 3D object detection.
Abstract:Autoformalization, the process of automatically translating natural language mathematics into machine-verifiable formal language, has demonstrated advancements with the progress of large language models (LLMs). However, a key obstacle to further advancements is the scarcity of paired datasets that align natural language with formal language. To address this challenge, we introduce ATLAS (Autoformalizing Theorems through Lifting, Augmentation, and Synthesis of Data), an iterative data generation framework designed to produce large-scale, high-quality parallel theorem statements. With the proposed ATLAS running for 10 iterations, we construct an undergraduate-level dataset comprising 300k theorem statements and develop the ATLAS translator, achieving accuracies of 80.59% (pass@8) and 92.99% (pass@128) on ProofNet, significantly outperforming the base model (23.99% and 47.17%) and InternLM2-Math-Plus-7B (50.94% and 80.32%). Furthermore, the ATLAS translator also achieves state-of-the-art performance on both the high-school-level miniF2F dataset and the graduate-level MathQual dataset introduced in this work. The datasets, model, and code will be released to the public soon.