refer to the report for detailed contributions
Abstract:We investigate the effectiveness of reinforcement learning methods for finetuning large language models when transitioning from offline to semi-online to fully online regimes for both verifiable and non-verifiable tasks. Our experiments cover training on verifiable math as well as non-verifiable instruction following with a set of benchmark evaluations for both. Across these settings, we extensively compare online and semi-online Direct Preference Optimization and Group Reward Policy Optimization objectives, and surprisingly find similar performance and convergence between these variants, which all strongly outperform offline methods. We provide a detailed analysis of the training dynamics and hyperparameter selection strategies to achieve optimal results. Finally, we show that multi-tasking with verifiable and non-verifiable rewards jointly yields improved performance across both task types.
Abstract:Video Individual Counting (VIC) is a recently introduced task that aims to estimate pedestrian flux from a video. It extends conventional Video Crowd Counting (VCC) beyond the per-frame pedestrian count. In contrast to VCC that only learns to count repeated pedestrian patterns across frames, the key problem of VIC is how to identify co-existent pedestrians between frames, which turns out to be a correspondence problem. Existing VIC approaches, however, mainly follow a one-to-one (O2O) matching strategy where the same pedestrian must be exactly matched between frames, leading to sensitivity to appearance variations or missing detections. In this work, we show that the O2O matching could be relaxed to a one-to-many (O2M) matching problem, which better fits the problem nature of VIC and can leverage the social grouping behavior of walking pedestrians. We therefore introduce OMAN, a simple but effective VIC model with implicit One-to-Many mAtchiNg, featuring an implicit context generator and a one-to-many pairwise matcher. Experiments on the SenseCrowd and CroHD benchmarks show that OMAN achieves the state-of-the-art performance. Code is available at \href{https://github.com/tiny-smart/OMAN}{OMAN}.
Abstract:In recent years, the performance of lightweight Single-Image Super-Resolution (SISR) has been improved significantly with the application of Convolutional Neural Networks (CNNs) and Large Kernel Attention (LKA). However, existing information distillation modules for lightweight SISR struggle to map inputs into High-Dimensional Non-Linear (HDNL) feature spaces, limiting their representation learning. And their LKA modules possess restricted ability to capture the multi-shape multi-scale information for long-range dependencies while encountering a quadratic increase in the computational burden with increasing convolutional kernel size of its depth-wise convolutional layer. To address these issues, we firstly propose a Star Distillation Module (SDM) to enhance the discriminative representation learning via information distillation in the HDNL feature spaces. Besides, we present a Multi-shape Multi-scale Large Kernel Attention (MM-LKA) module to learn representative long-range dependencies while incurring low computational and memory footprints, leading to improving the performance of CNN-based self-attention significantly. Integrating SDM and MM-LKA, we develop a Residual Star Distillation Attention Module (RSDAM) and take it as the building block of the proposed efficient Star Distillation Attention Network (SDAN) which possesses high reconstruction efficiency to recover a higher-quality image from the corresponding low-resolution (LR) counterpart. When compared with other lightweight state-of-the-art SISR methods, extensive experiments show that our SDAN with low model complexity yields superior performance quantitatively and visually.
Abstract:We introduce Auto-Connect, a novel approach for automatic rigging that explicitly preserves skeletal connectivity through a connectivity-preserving tokenization scheme. Unlike previous methods that predict bone positions represented as two joints or first predict points before determining connectivity, our method employs special tokens to define endpoints for each joint's children and for each hierarchical layer, effectively automating connectivity relationships. This approach significantly enhances topological accuracy by integrating connectivity information directly into the prediction framework. To further guarantee high-quality topology, we implement a topology-aware reward function that quantifies topological correctness, which is then utilized in a post-training phase through reward-guided Direct Preference Optimization. Additionally, we incorporate implicit geodesic features for latent top-k bone selection, which substantially improves skinning quality. By leveraging geodesic distance information within the model's latent space, our approach intelligently determines the most influential bones for each vertex, effectively mitigating common skinning artifacts. This combination of connectivity-preserving tokenization, reward-guided fine-tuning, and geodesic-aware bone selection enables our model to consistently generate more anatomically plausible skeletal structures with superior deformation properties.
Abstract:Large Language Models (LLMs) demonstrate impressive general-purpose reasoning and problem-solving abilities. However, they struggle with executing complex, long-horizon workflows that demand strict adherence to Standard Operating Procedures (SOPs), a critical requirement for real-world industrial automation. Despite this need, there is a lack of public benchmarks that reflect the complexity, structure, and domain-specific nuances of SOPs. To address this, we present three main contributions. First, we introduce a synthetic data generation framework to create realistic, industry-grade SOPs that rigorously test the planning, reasoning, and tool-use capabilities of LLM-based agents. Second, using this framework, we develop SOP-Bench, a benchmark of over 1,800 tasks across 10 industrial domains, each with APIs, tool interfaces, and human-validated test cases. Third, we evaluate two prominent agent architectures: Function-Calling and ReAct Agents, on SOP-Bench, observing average success rates of only 27% and 48%, respectively. Remarkably, when the tool registry is much larger than necessary, agents invoke incorrect tools nearly 100% of the time. These findings underscore a substantial gap between current agentic capabilities of LLMs and the demands of automating real-world SOPs. Performance varies significantly by task and domain, highlighting the need for domain-specific benchmarking and architectural choices before deployment. SOP-Bench is publicly available at http://sop-bench.s3-website-us-west-2.amazonaws.com/. We also release the prompts underpinning the data generation framework to support new domain-specific SOP benchmarks. We invite the community to extend SOP-Bench with SOPs from their industrial domains.
Abstract:Existing pretrained models for 3D mesh generation often suffer from data biases and produce low-quality results, while global reinforcement learning (RL) methods rely on object-level rewards that struggle to capture local structure details. To address these challenges, we present \textbf{Mesh-RFT}, a novel fine-grained reinforcement fine-tuning framework that employs Masked Direct Preference Optimization (M-DPO) to enable localized refinement via quality-aware face masking. To facilitate efficient quality evaluation, we introduce an objective topology-aware scoring system to evaluate geometric integrity and topological regularity at both object and face levels through two metrics: Boundary Edge Ratio (BER) and Topology Score (TS). By integrating these metrics into a fine-grained RL strategy, Mesh-RFT becomes the first method to optimize mesh quality at the granularity of individual faces, resolving localized errors while preserving global coherence. Experiment results show that our M-DPO approach reduces Hausdorff Distance (HD) by 24.6\% and improves Topology Score (TS) by 3.8\% over pre-trained models, while outperforming global DPO methods with a 17.4\% HD reduction and 4.9\% TS gain. These results demonstrate Mesh-RFT's ability to improve geometric integrity and topological regularity, achieving new state-of-the-art performance in production-ready mesh generation. Project Page: \href{https://hitcslj.github.io/mesh-rft/}{this https URL}.
Abstract:One explanation for the strong generalization ability of neural networks is implicit bias. Yet, the definition and mechanism of implicit bias in non-linear contexts remains little understood. In this work, we propose to characterize implicit bias by the count of connected regions in the input space with the same predicted label. Compared with parameter-dependent metrics (e.g., norm or normalized margin), region count can be better adapted to nonlinear, overparameterized models, because it is determined by the function mapping and is invariant to reparametrization. Empirically, we found that small region counts align with geometrically simple decision boundaries and correlate well with good generalization performance. We also observe that good hyper-parameter choices such as larger learning rates and smaller batch sizes can induce small region counts. We further establish the theoretical connections and explain how larger learning rate can induce small region counts in neural networks.
Abstract:Tactile sensing plays a crucial role in robot grasping and manipulation by providing essential contact information between the robot and the environment. In this paper, we present AllTact Fin Ray, a novel compliant gripper design with omni-directional and local tactile sensing capabilities. The finger body is unibody-casted using transparent elastic silicone, and a camera positioned at the base of the finger captures the deformation of the whole body and the contact face. Due to the global deformation of the adaptive structure, existing vision-based tactile sensing approaches that assume constant illumination are no longer applicable. To address this, we propose a novel sensing method where the global deformation is first reconstructed from the image using edge features and spatial constraints. Then, detailed contact geometry is computed from the brightness difference against a dynamically retrieved reference image. Extensive experiments validate the effectiveness of our proposed gripper design and sensing method in contact detection, force estimation, object grasping, and precise manipulation.
Abstract:AI-powered autonomous experimentation (AI/AE) can accelerate materials discovery but its effectiveness for electronic materials is hindered by data scarcity from lengthy and complex design-fabricate-test-analyze cycles. Unlike experienced human scientists, even advanced AI algorithms in AI/AE lack the adaptability to make informative real-time decisions with limited datasets. Here, we address this challenge by developing and implementing an AI decision interface on our AI/AE system. The central element of the interface is an AI advisor that performs real-time progress monitoring, data analysis, and interactive human-AI collaboration for actively adapting to experiments in different stages and types. We applied this platform to an emerging type of electronic materials-mixed ion-electron conducting polymers (MIECPs) -- to engineer and study the relationships between multiscale morphology and properties. Using organic electrochemical transistors (OECT) as the testing-bed device for evaluating the mixed-conducting figure-of-merit -- the product of charge-carrier mobility and the volumetric capacitance ({\mu}C*), our adaptive AI/AE platform achieved a 150% increase in {\mu}C* compared to the commonly used spin-coating method, reaching 1,275 F cm-1 V-1 s-1 in just 64 autonomous experimental trials. A study of 10 statistically selected samples identifies two key structural factors for achieving higher volumetric capacitance: larger crystalline lamellar spacing and higher specific surface area, while also uncovering a new polymer polymorph in this material.
Abstract:In this paper, we investigate a joint source-channel encoding (JSCE) scheme in an intelligent reflecting surface (IRS)-assisted multi-user semantic communication system. Semantic encoding not only compresses redundant information, but also enhances information orthogonality in a semantic feature space. Meanwhile, the IRS can adjust the spatial orthogonality, enabling concurrent multi-user semantic communication in densely deployed wireless networks to improve spectrum efficiency. We aim to maximize the users' semantic throughput by jointly optimizing the users' scheduling, the IRS's passive beamforming, and the semantic encoding strategies. To tackle this non-convex problem, we propose an explainable deep neural network-driven deep reinforcement learning (XD-DRL) framework. Specifically, we employ a deep neural network (DNN) to serve as a joint source-channel semantic encoder, enabling transmitters to extract semantic features from raw images. By leveraging structural similarity, we assign some DNN weight coefficients as the IRS's phase shifts, allowing simultaneous optimization of IRS's passive beamforming and DNN training. Given the IRS's passive beamforming and semantic encoding strategies, user scheduling is optimized using the DRL method. Numerical results validate that our JSCE scheme achieves superior semantic throughput compared to the conventional schemes and efficiently reduces the semantic encoder's mode size in multi-user scenarios.