Automated driving systems can be helpful in a wide range of societal challenges, e.g., mobility-on-demand and transportation logistics for last-mile delivery, by aiding the vehicle driver or taking over the responsibility for the dynamic driving task partially or completely. Ensuring the safety of automated driving systems is no trivial task, even more so for those systems of SAE Level 3 or above. To achieve this, mechanisms are needed that can continuously monitor the system's operating conditions, also denoted as the system's operational design domain. This paper presents a safety concept for automated driving systems which uses a combination of onboard runtime monitoring via connected dependability cage and off-board runtime monitoring via a remote command control center, to continuously monitor the system's ODD. On one side, the connected dependability cage fulfills a double functionality: (1) to monitor continuously the operational design domain of the automated driving system, and (2) to transfer the responsibility in a smooth and safe manner between the automated driving system and the off-board remote safety driver, who is present in the remote command control center. On the other side, the remote command control center enables the remote safety driver the monitoring and takeover of the vehicle's control. We evaluate our safety concept for automated driving systems in a lab environment and on a test field track and report on results and lessons learned.
Mobile edge computing (MEC) is essential for next-generation mobile network applications that prioritize various performance metrics, including delays and energy consumption. However, conventional single-objective scheduling solutions cannot be directly applied to practical systems in which the preferences of these applications (i.e., the weights of different objectives) are often unknown or challenging to specify in advance. In this study, we address this issue by formulating a multi-objective offloading problem for MEC with multiple edges to minimize expected long-term energy consumption and transmission delay while considering unknown preferences as parameters. To address the challenge of unknown preferences, we design a multi-objective (deep) reinforcement learning (MORL)-based resource scheduling scheme with proximal policy optimization (PPO). In addition, we introduce a well-designed state encoding method for constructing features for multiple edges in MEC systems, a sophisticated reward function for accurately computing the utilities of delay and energy consumption. Simulation results demonstrate that our proposed MORL scheme enhances the hypervolume of the Pareto front by up to 233.1% compared to benchmarks. Our full framework is available at https://github.com/gracefulning/mec_morl_multipolicy.
Exploiting the computational heterogeneity of mobile devices and edge nodes, mobile edge computation (MEC) provides an efficient approach to achieving real-time applications that are sensitive to information freshness, by offloading tasks from mobile devices to edge nodes. We use the metric Age-of-Information (AoI) to evaluate information freshness. An efficient solution to minimize the AoI for the MEC system with multiple users is non-trivial to obtain due to the random computing time. In this paper, we consider multiple users offloading tasks to heterogeneous edge servers in a MEC system. We first reformulate the problem as a Restless Multi-Arm-Bandit (RMAB) problem and establish a hierarchical Markov Decision Process (MDP) to characterize the updating of AoI for the MEC system. Based on the hierarchical MDP, we propose a nested index framework and design a nested index policy with provably asymptotic optimality. Finally, the closed form of the nested index is obtained, which enables the performance tradeoffs between computation complexity and accuracy. Our algorithm leads to an optimality gap reduction of up to 40%, compared to benchmarks. Our algorithm asymptotically approximates the lower bound as the system scalar gets large enough.
Length-controllable machine translation is a type of constrained translation. It aims to contain the original meaning as much as possible while controlling the length of the translation. We can use automatic summarization or machine translation evaluation metrics for length-controllable machine translation, but this is not necessarily suitable and accurate. This work is the first attempt to evaluate the automatic metrics for length-controllable machine translation tasks systematically. We conduct a rigorous human evaluation on two translation directions and evaluate 18 summarization or translation evaluation metrics. We find that BLEURT and COMET have the highest correlation with human evaluation and are most suitable as evaluation metrics for length-controllable machine translation.
Utilizing pivot language effectively can significantly improve low-resource machine translation. Usually, the two translation models, source-pivot and pivot-target, are trained individually and do not utilize the limited (source, target) parallel data. This work proposes an end-to-end training method for the cascaded translation model and configures an improved decoding algorithm. The input of the pivot-target model is modified to weighted pivot embedding based on the probability distribution output by the source-pivot model. This allows the model to be trained end-to-end. In addition, we mitigate the inconsistency between tokens and probability distributions while using beam search in pivot decoding. Experiments demonstrate that our method enhances the quality of translation.
Training Graph Neural Networks (GNNs) on large graphs is challenging due to the conflict between the high memory demand and limited GPU memory. Recently, distributed full-graph GNN training has been widely adopted to tackle this problem. However, the substantial inter-GPU communication overhead can cause severe throughput degradation. Existing communication compression techniques mainly focus on traditional DNN training, whose bottleneck lies in synchronizing gradients and parameters. We find they do not work well in distributed GNN training as the barrier is the layer-wise communication of features during the forward pass & feature gradients during the backward pass. To this end, we propose an efficient distributed GNN training framework Sylvie, which employs one-bit quantization technique in GNNs and further pipelines the curtailed communication with computation to enormously shrink the overhead while maintaining the model quality. In detail, Sylvie provides a lightweight Low-bit Module to quantize the sent data and dequantize the received data back to full precision values in each layer. Additionally, we propose a Bounded Staleness Adaptor to control the introduced staleness to achieve further performance enhancement. We conduct theoretical convergence analysis and extensive experiments on various models & datasets to demonstrate Sylvie can considerably boost the training throughput by up to 28.1x.
Multi-view imaging systems enable uniform coverage of 3D space and reduce the impact of occlusion, which is beneficial for 3D object detection and tracking accuracy. However, existing imaging systems built with multi-view cameras or depth sensors are limited by the small applicable scene and complicated composition. In this paper, we propose a wireless multi-view multi-modal 3D imaging system generally applicable to large outdoor scenes, which consists of a master node and several slave nodes. Multiple spatially distributed slave nodes equipped with cameras and LiDARs are connected to form a wireless sensor network. While providing flexibility and scalability, the system applies automatic spatio-temporal calibration techniques to obtain accurate 3D multi-view multi-modal data. This system is the first imaging system that integrates mutli-view RGB cameras and LiDARs in large outdoor scenes among existing 3D imaging systems. We perform point clouds based 3D object detection and long-term tracking using the 3D imaging dataset collected by this system. The experimental results show that multi-view point clouds greatly improve 3D object detection and tracking accuracy regardless of complex and various outdoor environments.
The ubiquity of camera-embedded devices and the advances in deep learning have stimulated various intelligent mobile video applications. These applications often demand on-device processing of video streams to deliver real-time, high-quality services for privacy and robustness concerns. However, the performance of these applications is constrained by the raw video streams, which tend to be taken with small-aperture cameras of ubiquitous mobile platforms in dim light. Despite extensive low-light video enhancement solutions, they are unfit for deployment to mobile devices due to their complex models and and ignorance of system dynamics like energy budgets. In this paper, we propose AdaEnlight, an energy-aware low-light video stream enhancement system on mobile devices. It achieves real-time video enhancement with competitive visual quality while allowing runtime behavior adaptation to the platform-imposed dynamic energy budgets. We report extensive experiments on diverse datasets, scenarios, and platforms and demonstrate the superiority of AdaEnlight compared with state-of-the-art low-light image and video enhancement solutions.
In a modern power system with an increasing proportion of renewable energy, wind power prediction is crucial to the arrangement of power grid dispatching plans due to the volatility of wind power. However, traditional centralized forecasting methods raise concerns regarding data privacy-preserving and data islands problem. To handle the data privacy and openness, we propose a forecasting scheme that combines federated learning and deep reinforcement learning (DRL) for ultra-short-term wind power forecasting, called federated deep reinforcement learning (FedDRL). Firstly, this paper uses the deep deterministic policy gradient (DDPG) algorithm as the basic forecasting model to improve prediction accuracy. Secondly, we integrate the DDPG forecasting model into the framework of federated learning. The designed FedDRL can obtain an accurate prediction model in a decentralized way by sharing model parameters instead of sharing private data which can avoid sensitive privacy issues. The simulation results show that the proposed FedDRL outperforms the traditional prediction methods in terms of forecasting accuracy. More importantly, while ensuring the forecasting performance, FedDRL can effectively protect the data privacy and relieve the communication pressure compared with the traditional centralized forecasting method. In addition, a simulation with different federated learning parameters is conducted to confirm the robustness of the proposed scheme.
Realistic dynamic garments on animated characters have many AR/VR applications. While authoring such dynamic garment geometry is still a challenging task, data-driven simulation provides an attractive alternative, especially if it can be controlled simply using the motion of the underlying character. In this work, we focus on motion guided dynamic 3D garments, especially for loose garments. In a data-driven setup, we first learn a generative space of plausible garment geometries. Then, we learn a mapping to this space to capture the motion dependent dynamic deformations, conditioned on the previous state of the garment as well as its relative position with respect to the underlying body. Technically, we model garment dynamics, driven using the input character motion, by predicting per-frame local displacements in a canonical state of the garment that is enriched with frame-dependent skinning weights to bring the garment to the global space. We resolve any remaining per-frame collisions by predicting residual local displacements. The resultant garment geometry is used as history to enable iterative rollout prediction. We demonstrate plausible generalization to unseen body shapes and motion inputs, and show improvements over multiple state-of-the-art alternatives.