Abstract:Knowledge distillation typically employs the Kullback-Leibler (KL) divergence to constrain the student model's output to match the soft labels provided by the teacher model exactly. However, sometimes the optimization direction of the KL divergence loss is not always aligned with the task loss, where a smaller KL divergence could lead to erroneous predictions that diverge from the soft labels. This limitation often results in suboptimal optimization for the student. Moreover, even under temperature scaling, the KL divergence loss function tends to overly focus on the larger-valued channels in the logits, disregarding the rich inter-class information provided by the multitude of smaller-valued channels. This hard constraint proves too challenging for lightweight students, hindering further knowledge distillation. To address this issue, we propose a plug-and-play ranking loss based on Kendall's $\tau$ coefficient, called Rank-Kendall Knowledge Distillation (RKKD). RKKD balances the attention to smaller-valued channels by constraining the order of channel values in student logits, providing more inter-class relational information. The rank constraint on the top-valued channels helps avoid suboptimal traps during optimization. We also discuss different differentiable forms of Kendall's $\tau$ coefficient and demonstrate that the proposed ranking loss function shares a consistent optimization objective with the KL divergence. Extensive experiments on the CIFAR-100 and ImageNet datasets show that our RKKD can enhance the performance of various knowledge distillation baselines and offer broad improvements across multiple teacher-student architecture combinations.
Abstract:Large language models encapsulate knowledge and have demonstrated superior performance on various natural language processing tasks. Recent studies have localized this knowledge to specific model parameters, such as the MLP weights in intermediate layers. This study investigates the differences between entity and relational knowledge through knowledge editing. Our findings reveal that entity and relational knowledge cannot be directly transferred or mapped to each other. This result is unexpected, as logically, modifying the entity or the relation within the same knowledge triplet should yield equivalent outcomes. To further elucidate the differences between entity and relational knowledge, we employ causal analysis to investigate how relational knowledge is stored in pre-trained models. Contrary to prior research suggesting that knowledge is stored in MLP weights, our experiments demonstrate that relational knowledge is also significantly encoded in attention modules. This insight highlights the multifaceted nature of knowledge storage in language models, underscoring the complexity of manipulating specific types of knowledge within these models.
Abstract:Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations, such as parameter sizes, pretraining duration, and alignment processes on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in domain accuracy, data efficiency, zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. We evaluate over 15 different backbone LLMs and non LLMs. Our findings reveal that larger models and extensive pretraining consistently enhance in domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.
Abstract:LLM have achieved success in many fields but still troubled by problematic content in the training corpora. LLM unlearning aims at reducing their influence and avoid undesirable behaviours. However, existing unlearning methods remain vulnerable to adversarial queries and the unlearned knowledge resurfaces after the manually designed attack queries. As part of a red-team effort to proactively assess the vulnerabilities of unlearned models, we design Dynamic Unlearning Attack (DUA), a dynamic and automated framework to attack these models and evaluate their robustness. It optimizes adversarial suffixes to reintroduce the unlearned knowledge in various scenarios. We find that unlearned knowledge can be recovered in $55.2\%$ of the questions, even without revealing the unlearned model's parameters. In response to this vulnerability, we propose Latent Adversarial Unlearning (LAU), a universal framework that effectively enhances the robustness of the unlearned process. It formulates the unlearning process as a min-max optimization problem and resolves it through two stages: an attack stage, where perturbation vectors are trained and added to the latent space of LLMs to recover the unlearned knowledge, and a defense stage, where previously trained perturbation vectors are used to enhance unlearned model's robustness. With our LAU framework, we obtain two robust unlearning methods, AdvGA and AdvNPO. We conduct extensive experiments across multiple unlearning benchmarks and various models, and demonstrate that they improve the unlearning effectiveness by over $53.5\%$, cause only less than a $11.6\%$ reduction in neighboring knowledge, and have almost no impact on the model's general capabilities.
Abstract:In the realm of event prediction, temporal knowledge graph forecasting (TKGF) stands as a pivotal technique. Previous approaches face the challenges of not utilizing experience during testing and relying on a single short-term history, which limits adaptation to evolving data. In this paper, we introduce the Online Neural-Symbolic Event Prediction (ONSEP) framework, which innovates by integrating dynamic causal rule mining (DCRM) and dual history augmented generation (DHAG). DCRM dynamically constructs causal rules from real-time data, allowing for swift adaptation to new causal relationships. In parallel, DHAG merges short-term and long-term historical contexts, leveraging a bi-branch approach to enrich event prediction. Our framework demonstrates notable performance enhancements across diverse datasets, with significant Hit@k (k=1,3,10) improvements, showcasing its ability to augment large language models (LLMs) for event prediction without necessitating extensive retraining. The ONSEP framework not only advances the field of TKGF but also underscores the potential of neural-symbolic approaches in adapting to dynamic data environments.
Abstract:Knowledge editing aims to update outdated or incorrect knowledge in large language models (LLMs). However, current knowledge editing methods have limited scalability for lifelong editing. This study explores the fundamental reason why knowledge editing fails in lifelong editing. We begin with the closed-form solution derived from linear associative memory, which underpins state-of-the-art knowledge editing methods. We extend the solution from single editing to lifelong editing, and through rigorous mathematical derivation, identify an interference term in the final solution, suggesting that editing knowledge may impact irrelevant knowledge. Further analysis of the interference term reveals a close relationship with superposition between knowledge representations. When knowledge superposition does not exist in language models, the interference term vanishes, allowing for lossless knowledge editing. Experiments across numerous language models reveal that knowledge superposition is universal, exhibiting high kurtosis, zero mean, and heavy-tailed distributions with clear scaling laws. Ultimately, by combining theory and experiments, we demonstrate that knowledge superposition is the fundamental reason for the failure of lifelong editing. Moreover, this is the first study to investigate knowledge editing from the perspective of superposition and provides a comprehensive observation of superposition across numerous real-world language models. Code available at https://github.com/ChenhuiHu/knowledge_in_superposition.
Abstract:Enabling Large Language Models (LLMs) to generate citations in Question-Answering (QA) tasks is an emerging paradigm aimed at enhancing the verifiability of their responses when LLMs are utilizing external references to generate an answer. However, there is currently no unified framework to standardize and fairly compare different citation generation methods, leading to difficulties in reproducing different methods and a comprehensive assessment. To cope with the problems above, we introduce \name, an open-source and modular toolkit designed to facilitate the implementation and evaluation of existing citation generation methods, while also fostering the development of new approaches to improve citation quality in LLM outputs. This tool is highly extensible, allowing users to utilize 4 main modules and 14 components to construct a pipeline, evaluating an existing method or innovative designs. Our experiments with two state-of-the-art LLMs and 11 citation generation baselines demonstrate varying strengths of different modules in answer accuracy and citation quality improvement, as well as the challenge of enhancing granularity. Based on our analysis of the effectiveness of components, we propose a new method, self-RAG \snippet, obtaining a balanced answer accuracy and citation quality. Citekit is released at https://github.com/SjJ1017/Citekit.
Abstract:Graph Convolutional Neural Network (GCN), a widely adopted method for analyzing relational data, enhances node discriminability through the aggregation of neighboring information. Usually, stacking multiple layers can improve the performance of GCN by leveraging information from high-order neighbors. However, the increase of the network depth will induce the over-smoothing problem, which can be attributed to the quality and quantity of neighbors changing: (a) neighbor quality, node's neighbors become overlapping in high order, leading to aggregated information becoming indistinguishable, (b) neighbor quantity, the exponentially growing aggregated neighbors submerges the node's initial feature by recursively aggregating operations. Current solutions mainly focus on one of the above causes and seldom consider both at once. Aiming at tackling both causes of over-smoothing in one shot, we introduce a simple Two-Sided Constraint (TSC) for GCNs, comprising two straightforward yet potent techniques: random masking and contrastive constraint. The random masking acts on the representation matrix's columns to regulate the degree of information aggregation from neighbors, thus preventing the convergence of node representations. Meanwhile, the contrastive constraint, applied to the representation matrix's rows, enhances the discriminability of the nodes. Designed as a plug-in module, TSC can be easily coupled with GCN or SGC architectures. Experimental analyses on diverse real-world graph datasets verify that our approach markedly reduces the convergence of node's representation and the performance degradation in deeper GCN.
Abstract:Although Large Language Models (LLMs) have demonstrated strong instruction-following ability to be helpful, they are further supposed to be controlled and guided by rules in real-world scenarios to be safe, and accurate in responses. This demands the possession of rule-following capability of LLMs. However, few works have made a clear evaluation of the rule-following capability of LLMs. Previous studies that try to evaluate the rule-following capability of LLMs fail to distinguish the rule-following scenarios from the instruction-following scenarios. Therefore, this paper first makes a clarification of the concept of rule-following, and curates a comprehensive benchmark, RuleBench, to evaluate a diversified range of rule-following abilities. Our experimental results on a variety of LLMs show that they are still limited in following rules. Our further analysis provides insights into the improvements for LLMs toward a better rule-following intelligent agent. The data and code can be found at: https://anonymous.4open.science/r/llm-rule-following-B3E3/
Abstract:Multilingual Knowledge Graph Completion (mKGC) aim at solving queries like (h, r, ?) in different languages by reasoning a tail entity t thus improving multilingual knowledge graphs. Previous studies leverage multilingual pretrained language models (PLMs) and the generative paradigm to achieve mKGC. Although multilingual pretrained language models contain extensive knowledge of different languages, its pretraining tasks cannot be directly aligned with the mKGC tasks. Moreover, the majority of KGs and PLMs currently available exhibit a pronounced English-centric bias. This makes it difficult for mKGC to achieve good results, particularly in the context of low-resource languages. To overcome previous problems, this paper introduces global and local knowledge constraints for mKGC. The former is used to constrain the reasoning of answer entities, while the latter is used to enhance the representation of query contexts. The proposed method makes the pretrained model better adapt to the mKGC task. Experimental results on public datasets demonstrate that our method outperforms the previous SOTA on Hits@1 and Hits@10 by an average of 12.32% and 16.03%, which indicates that our proposed method has significant enhancement on mKGC.