Large language models (LLMs) have achieved remarkable advancements in the field of natural language processing. However, the sheer scale and computational demands of these models present formidable challenges when considering their practical deployment in resource-constrained contexts. While techniques such as chain-of-thought (CoT) distillation have displayed promise in distilling LLMs into small language models (SLMs), there is a risk that distilled SLMs may still carry over flawed reasoning or hallucinations inherited from their LLM counterparts. To address these issues, we propose a twofold methodology: First, we introduce a novel method for distilling the self-evaluation capability inherent in LLMs into SLMs, which aims to mitigate the adverse effects of erroneous reasoning and reduce hallucinations. Second, we advocate for a comprehensive distillation process that incorporates multiple distinct chain-of-thought and self-evaluation paradigms and ensures a more holistic and robust knowledge transfer into SLMs. Experiments on three NLP benchmarks demonstrate that our method significantly improves the performance of distilled SLMs and sheds light on the path towards developing smaller models closely aligned with human cognition.
Extracting key information from scientific papers has the potential to help researchers work more efficiently and accelerate the pace of scientific progress. Over the last few years, research on Scientific Information Extraction (SciIE) witnessed the release of several new systems and benchmarks. However, existing paper-focused datasets mostly focus only on specific parts of a manuscript (e.g., abstracts) and are single-modality (i.e., text- or table-only), due to complex processing and expensive annotations. Moreover, core information can be present in either text or tables or across both. To close this gap in data availability and enable cross-modality IE, while alleviating labeling costs, we propose a semi-supervised pipeline for annotating entities in text, as well as entities and relations in tables, in an iterative procedure. Based on this pipeline, we release novel resources for the scientific community, including a high-quality benchmark, a large-scale corpus, and a semi-supervised annotation pipeline. We further report the performance of state-of-the-art IE models on the proposed benchmark dataset, as a baseline. Lastly, we explore the potential capability of large language models such as ChatGPT for the current task. Our new dataset, results, and analysis validate the effectiveness and efficiency of our semi-supervised pipeline, and we discuss its remaining limitations.
Electronic theses and dissertations (ETDs) have been proposed, advocated, and generated for more than 25 years. Although ETDs are hosted by commercial or institutional digital library repositories, they are still an understudied type of scholarly big data, partially because they are usually longer than conference proceedings and journals. Segmenting ETDs will allow researchers to study sectional content. Readers can navigate to particular pages of interest, discover, and explore the content buried in these long documents. Most existing frameworks on document page classification are designed for classifying general documents and perform poorly on ETDs. In this paper, we propose ETDPC. Its backbone is a two-stream multimodal model with a cross-attention network to classify ETD pages into 13 categories. To overcome the challenge of imbalanced labeled samples, we augmented data for minority categories and employed a hierarchical classifier. ETDPC outperforms the state-of-the-art models in all categories, achieving an F1 of 0.84 -- 0.96 for 9 out of 13 categories. We also demonstrated its data efficiency. The code and data can be found on GitHub (https://github.com/lamps-lab/ETDMiner/tree/master/etd_segmentation).
Recent advances in computer vision (CV) and natural language processing have been driven by exploiting big data on practical applications. However, these research fields are still limited by the sheer volume, versatility, and diversity of the available datasets. CV tasks, such as image captioning, which has primarily been carried out on natural images, still struggle to produce accurate and meaningful captions on sketched images often included in scientific and technical documents. The advancement of other tasks such as 3D reconstruction from 2D images requires larger datasets with multiple viewpoints. We introduce DeepPatent2, a large-scale dataset, providing more than 2.7 million technical drawings with 132,890 object names and 22,394 viewpoints extracted from 14 years of US design patent documents. We demonstrate the usefulness of DeepPatent2 with conceptual captioning. We further provide the potential usefulness of our dataset to facilitate other research areas such as 3D image reconstruction and image retrieval.
We present a data and cost efficient way of incorporating the speech modality into a large language model (LLM). The resulting multi-modal LLM is a COntextual Speech Model with Instruction-following/in-context-learning Capabilities - COSMIC. Speech comprehension test question-answer (SQA) pairs are generated using GPT-3.5 based on the speech transcriptions as a part of the supervision for the instruction tuning. With fewer than 20M trainable parameters and as little as 450 hours of English speech data for SQA generation, COSMIC exhibits emergent instruction-following and in-context learning capabilities in speech-to-text tasks. The model is able to follow the given text instructions to generate text response even on the unseen EN$\to$X speech-to-text translation (S2TT) task with zero-shot setting. We evaluate the model's in-context learning via various tasks such as EN$\to$X S2TT and few-shot domain adaptation. And instruction-following capabilities are evaluated through a contextual biasing benchmark. Our results demonstrate the efficacy of the proposed low cost recipe for building a speech LLM and that with the new instruction-tuning data.
Recent discoveries have revealed that deep neural networks might behave in a biased manner in many real-world scenarios. For instance, deep networks trained on a large-scale face recognition dataset CelebA tend to predict blonde hair for females and black hair for males. Such biases not only jeopardize the robustness of models but also perpetuate and amplify social biases, which is especially concerning for automated decision-making processes in healthcare, recruitment, etc., as they could exacerbate unfair economic and social inequalities among different groups. Existing debiasing methods suffer from high costs in bias labeling or model re-training, while also exhibiting a deficiency in terms of elucidating the origins of biases within the model. To this respect, we propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases inherent in trained models. The FMD identifies biased attributes through an explicit counterfactual concept and quantifies the influence of data samples with influence functions. Moreover, we design a machine unlearning-based strategy to efficiently and effectively remove the bias in a trained model with a small counterfactual dataset. Experiments on the Colored MNIST, CelebA, and Adult Income datasets along with experiments with large language models demonstrate that our method achieves superior or competing accuracies compared with state-of-the-art methods while attaining significantly fewer biases and requiring much less debiasing cost. Notably, our method requires only a small external dataset and updating a minimal amount of model parameters, without the requirement of access to training data that may be too large or unavailable in practice.
Data privacy and long-tailed distribution are the norms rather than the exception in many real-world tasks. This paper investigates a federated long-tailed learning (Fed-LT) task in which each client holds a locally heterogeneous dataset; if the datasets can be globally aggregated, they jointly exhibit a long-tailed distribution. Under such a setting, existing federated optimization and/or centralized long-tailed learning methods hardly apply due to challenges in (a) characterizing the global long-tailed distribution under privacy constraints and (b) adjusting the local learning strategy to cope with the head-tail imbalance. In response, we propose a method termed $\texttt{Fed-GraB}$, comprised of a Self-adjusting Gradient Balancer (SGB) module that re-weights clients' gradients in a closed-loop manner, based on the feedback of global long-tailed distribution evaluated by a Direct Prior Analyzer (DPA) module. Using $\texttt{Fed-GraB}$, clients can effectively alleviate the distribution drift caused by data heterogeneity during the model training process and obtain a global model with better performance on the minority classes while maintaining the performance of the majority classes. Extensive experiments demonstrate that $\texttt{Fed-GraB}$ achieves state-of-the-art performance on representative datasets such as CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT, and iNaturalist.
Data imbalance and open-ended distribution are two intrinsic characteristics of the real visual world. Though encouraging progress has been made in tackling each challenge separately, few works dedicated to combining them towards real-world scenarios. While several previous works have focused on classifying close-set samples and detecting open-set samples during testing, it's still essential to be able to classify unknown subjects as human beings. In this paper, we formally define a more realistic task as distribution-agnostic generalized category discovery (DA-GCD): generating fine-grained predictions for both close- and open-set classes in a long-tailed open-world setting. To tackle the challenging problem, we propose a Self-Balanced Co-Advice contrastive framework (BaCon), which consists of a contrastive-learning branch and a pseudo-labeling branch, working collaboratively to provide interactive supervision to resolve the DA-GCD task. In particular, the contrastive-learning branch provides reliable distribution estimation to regularize the predictions of the pseudo-labeling branch, which in turn guides contrastive learning through self-balanced knowledge transfer and a proposed novel contrastive loss. We compare BaCon with state-of-the-art methods from two closely related fields: imbalanced semi-supervised learning and generalized category discovery. The effectiveness of BaCon is demonstrated with superior performance over all baselines and comprehensive analysis across various datasets. Our code is publicly available.