Abstract:Prompt learning is one of the most effective paradigms for adapting pre-trained vision-language models (VLMs) to the biomedical image classification tasks in few shot scenarios. However, most of the current prompt learning methods only used the text prompts and ignored the particular structures (such as the complex anatomical structures and subtle pathological features) in the biomedical images. In this work, we propose Biomed-DPT, a knowledge-enhanced dual modality prompt tuning technique. In designing the text prompt, Biomed-DPT constructs a dual prompt including the template-driven clinical prompts and the large language model (LLM)-driven domain-adapted prompts, then extracts the clinical knowledge from the domain-adapted prompts through the knowledge distillation technique. In designing the vision prompt, Biomed-DPT introduces the zero vector as a soft prompt to leverage attention re-weighting so that the focus on non-diagnostic regions and the recognition of non-critical pathological features are avoided. Biomed-DPT achieves an average classification accuracy of 66.14\% across 11 biomedical image datasets covering 9 modalities and 10 organs, with performance reaching 78.06\% in base classes and 75.97\% in novel classes, surpassing the Context Optimization (CoOp) method by 6.20\%, 3.78\%, and 8.04\%, respectively. Our code are available at \underline{https://github.com/Kanyooo/Biomed-DPT}.
Abstract:We propose an input convex neural network (ICNN)-based self-supervised learning framework to solve continuous constrained optimization problems. By integrating the augmented Lagrangian method (ALM) with the constraint correction mechanism, our framework ensures \emph{non-strict constraint feasibility}, \emph{better optimality gap}, and \emph{best convergence rate} with respect to the state-of-the-art learning-based methods. We provide a rigorous convergence analysis, showing that the algorithm converges to a Karush-Kuhn-Tucker (KKT) point of the original problem even when the internal solver is a neural network, and the approximation error is bounded. We test our approach on a range of benchmark tasks including quadratic programming (QP), nonconvex programming, and large-scale AC optimal power flow problems. The results demonstrate that compared to existing solvers (e.g., \texttt{OSQP}, \texttt{IPOPT}) and the latest learning-based methods (e.g., DC3, PDL), our approach achieves a superior balance among accuracy, feasibility, and computational efficiency.
Abstract:Reconstructing visual stimulus images is a significant task in neural decoding, and up to now, most studies consider the functional magnetic resonance imaging (fMRI) as the signal source. However, the fMRI-based image reconstruction methods are difficult to widely applied because of the complexity and high cost of the acquisition equipments. Considering the advantages of low cost and easy portability of the electroencephalogram (EEG) acquisition equipments, we propose a novel image reconstruction method based on EEG signals in this paper. Firstly, to satisfy the high recognizability of visual stimulus images in fast switching manner, we build a visual stimuli image dataset, and obtain the EEG dataset by a corresponding EEG signals collection experiment. Secondly, the deep visual representation model(DVRM) consisting of a primary encoder and a subordinate decoder is proposed to reconstruct visual stimuli. The encoder is designed based on the residual-in-residual dense blocks to learn the distribution characteristics between EEG signals and visual stimulus images, while the decoder is designed based on the deep neural network to reconstruct the visual stimulus image from the learned deep visual representation. The DVRM can fit the deep and multiview visual features of human natural state and make the reconstructed images more precise. Finally, we evaluate the DVRM in the quality of the generated images on our EEG dataset. The results show that the DVRM have good performance in the task of learning deep visual representation from EEG signals and generating reconstructed images that are realistic and highly resemble the original images.