Abstract:Crisis classification in social media aims to extract actionable disaster-related information from multimodal posts, which is a crucial task for enhancing situational awareness and facilitating timely emergency responses. However, the wide variation in crisis types makes achieving generalizable performance across unseen disasters a persistent challenge. Existing approaches primarily leverage deep learning to fuse textual and visual cues for crisis classification, achieving numerically plausible results under in-domain settings. However, they exhibit poor generalization across unseen crisis types because they 1. do not disentangle spurious and causal features, resulting in performance degradation under domain shift, and 2. fail to align heterogeneous modality representations within a shared space, which hinders the direct adaptation of established single-modality domain generalization (DG) techniques to the multimodal setting. To address these issues, we introduce a causality-guided multimodal domain generalization (MMDG) framework that combines adversarial disentanglement with unified representation learning for crisis classification. The adversarial objective encourages the model to disentangle and focus on domain-invariant causal features, leading to more generalizable classifications grounded in stable causal mechanisms. The unified representation aligns features from different modalities within a shared latent space, enabling single-modality DG strategies to be seamlessly extended to multimodal learning. Experiments on the different datasets demonstrate that our approach achieves the best performance in unseen disaster scenarios.
Abstract:Large Language Model (LLM)-based agents with function-calling capabilities are increasingly deployed, but remain vulnerable to Indirect Prompt Injection (IPI) attacks that hijack their tool calls. In response, numerous IPI-centric defense frameworks have emerged. However, these defenses are fragmented, lacking a unified taxonomy and comprehensive evaluation. In this Systematization of Knowledge (SoK), we present the first comprehensive analysis of IPI-centric defense frameworks. We introduce a comprehensive taxonomy of these defenses, classifying them along five dimensions. We then thoroughly assess the security and usability of representative defense frameworks. Through analysis of defensive failures in the assessment, we identify six root causes of defense circumvention. Based on these findings, we design three novel adaptive attacks that significantly improve attack success rates targeting specific frameworks, demonstrating the severity of the flaws in these defenses. Our paper provides a foundation and critical insights for the future development of more secure and usable IPI-centric agent defense frameworks.
Abstract:Large language models (LLMs) have recently achieved impressive results in speech recognition across multiple modalities, including Auditory Speech Recognition (ASR), Visual Speech Recognition (VSR), and Audio-Visual Speech Recognition (AVSR). Despite this progress, current LLM-based approaches typically address each task independently, training separate models that raise computational and deployment resource use while missing potential cross-task synergies. They also rely on fixed-rate token compression, which restricts flexibility in balancing accuracy with efficiency. These limitations highlight the need for a unified framework that can support ASR, VSR, and AVSR while enabling elastic inference. To this end, we present Omni-AVSR, a unified audio-visual LLM that combines efficient multi-granularity training with parameter-efficient adaptation. Specifically, we adapt the matryoshka representation learning paradigm to efficiently train across multiple audio and visual granularities, reducing its inherent training resource use. Furthermore, we explore three LoRA-based strategies for adapting the backbone LLM, balancing shared and task-specific specialization. Experiments on LRS2 and LRS3 show that Omni-AVSR achieves comparable or superior accuracy to state-of-the-art baselines while training a single model at substantially lower training and deployment resource use. The model also remains robust under acoustic noise, and we analyze its scaling behavior as LLM size increases, providing insights into the trade-off between performance and efficiency.
Abstract:The increasing use of two-dimensional (2D) materials in nanoelectronics demands robust metrology techniques for electrical characterization, especially for large-scale production. While atomic force microscopy (AFM) techniques like conductive AFM (C-AFM) offer high accuracy, they suffer from slow data acquisition speeds due to the raster scanning process. To address this, we introduce SparseC-AFM, a deep learning model that rapidly and accurately reconstructs conductivity maps of 2D materials like MoS$_2$ from sparse C-AFM scans. Our approach is robust across various scanning modes, substrates, and experimental conditions. We report a comparison between (a) classic flow implementation, where a high pixel density C-AFM image (e.g., 15 minutes to collect) is manually parsed to extract relevant material parameters, and (b) our SparseC-AFM method, which achieves the same operation using data that requires substantially less acquisition time (e.g., under 5 minutes). SparseC-AFM enables efficient extraction of critical material parameters in MoS$_2$, including film coverage, defect density, and identification of crystalline island boundaries, edges, and cracks. We achieve over 11x reduction in acquisition time compared to manual extraction from a full-resolution C-AFM image. Moreover, we demonstrate that our model-predicted samples exhibit remarkably similar electrical properties to full-resolution data gathered using classic-flow scanning. This work represents a significant step toward translating AI-assisted 2D material characterization from laboratory research to industrial fabrication. Code and model weights are available at github.com/UNITES-Lab/sparse-cafm.
Abstract:Multi-part assembly poses significant challenges for robots to execute long-horizon, contact-rich manipulation with generalization across complex geometries. We present Fabrica, a dual-arm robotic system capable of end-to-end planning and control for autonomous assembly of general multi-part objects. For planning over long horizons, we develop hierarchies of precedence, sequence, grasp, and motion planning with automated fixture generation, enabling general multi-step assembly on any dual-arm robots. The planner is made efficient through a parallelizable design and is optimized for downstream control stability. For contact-rich assembly steps, we propose a lightweight reinforcement learning framework that trains generalist policies across object geometries, assembly directions, and grasp poses, guided by equivariance and residual actions obtained from the plan. These policies transfer zero-shot to the real world and achieve 80% successful steps. For systematic evaluation, we propose a benchmark suite of multi-part assemblies resembling industrial and daily objects across diverse categories and geometries. By integrating efficient global planning and robust local control, we showcase the first system to achieve complete and generalizable real-world multi-part assembly without domain knowledge or human demonstrations. Project website: http://fabrica.csail.mit.edu/
Abstract:This paper explores multi-modal controllable Text-to-Speech Synthesis (TTS) where the voice can be generated from face image, and the characteristics of output speech (e.g., pace, noise level, distance, tone, place) can be controllable with natural text description. Specifically, we aim to mitigate the following three challenges in face-driven TTS systems. 1) To overcome the limited audio quality of audio-visual speech corpora, we propose a training method that additionally utilizes high-quality audio-only speech corpora. 2) To generate voices not only from real human faces but also from artistic portraits, we propose augmenting the input face image with stylization. 3) To consider one-to-many possibilities in face-to-voice mapping and ensure consistent voice generation at the same time, we propose to first employ sampling-based decoding and then use prompting with generated speech samples. Experimental results validate the proposed model's effectiveness in face-driven voice synthesis.
Abstract:DONNs harness the physics of light propagation for efficient analog computation, with applications in AI and signal processing. Advances in nanophotonic fabrication and metasurface-based wavefront engineering have opened new pathways to realize high-capacity DONNs across various spectral regimes. Training such DONN systems to determine the metasurface structures remains challenging. Heuristic methods are fast but oversimplify metasurfaces modulation, often resulting in physically unrealizable designs and significant performance degradation. Simulation-in-the-loop training methods directly optimize a physically implementable metasurface using adjoint methods during end-to-end DONN training, but are inherently computationally prohibitive and unscalable.To address these limitations, we propose SP2RINT, a spatially decoupled, progressive training framework that formulates DONN training as a PDE-constrained learning problem. Metasurface responses are first relaxed into freely trainable transfer matrices with a banded structure. We then progressively enforce physical constraints by alternating between transfer matrix training and adjoint-based inverse design, avoiding per-iteration PDE solves while ensuring final physical realizability. To further reduce runtime, we introduce a physics-inspired, spatially decoupled inverse design strategy based on the natural locality of field interactions. This approach partitions the metasurface into independently solvable patches, enabling scalable and parallel inverse design with system-level calibration. Evaluated across diverse DONN training tasks, SP2RINT achieves digital-comparable accuracy while being 1825 times faster than simulation-in-the-loop approaches. By bridging the gap between abstract DONN models and implementable photonic hardware, SP2RINT enables scalable, high-performance training of physically realizable meta-optical neural systems.
Abstract:The development of novel autonomous underwater gliders has been hindered by limited shape diversity, primarily due to the reliance on traditional design tools that depend heavily on manual trial and error. Building an automated design framework is challenging due to the complexities of representing glider shapes and the high computational costs associated with modeling complex solid-fluid interactions. In this work, we introduce an AI-enhanced automated computational framework designed to overcome these limitations by enabling the creation of underwater robots with non-trivial hull shapes. Our approach involves an algorithm that co-optimizes both shape and control signals, utilizing a reduced-order geometry representation and a differentiable neural-network-based fluid surrogate model. This end-to-end design workflow facilitates rapid iteration and evaluation of hydrodynamic performance, leading to the discovery of optimal and complex hull shapes across various control settings. We validate our method through wind tunnel experiments and swimming pool gliding tests, demonstrating that our computationally designed gliders surpass manually designed counterparts in terms of energy efficiency. By addressing challenges in efficient shape representation and neural fluid surrogate models, our work paves the way for the development of highly efficient underwater gliders, with implications for long-range ocean exploration and environmental monitoring.
Abstract:We present TopoGaussian, a holistic, particle-based pipeline for inferring the interior structure of an opaque object from easily accessible photos and videos as input. Traditional mesh-based approaches require tedious and error-prone mesh filling and fixing process, while typically output rough boundary surface. Our pipeline combines Gaussian Splatting with a novel, versatile particle-based differentiable simulator that simultaneously accommodates constitutive model, actuator, and collision, without interference with mesh. Based on the gradients from this simulator, we provide flexible choice of topology representation for optimization, including particle, neural implicit surface, and quadratic surface. The resultant pipeline takes easily accessible photos and videos as input and outputs the topology that matches the physical characteristics of the input. We demonstrate the efficacy of our pipeline on a synthetic dataset and four real-world tasks with 3D-printed prototypes. Compared with existing mesh-based method, our pipeline is 5.26x faster on average with improved shape quality. These results highlight the potential of our pipeline in 3D vision, soft robotics, and manufacturing applications.




Abstract:Inverse design has emerged as a transformative approach for photonic device optimization, enabling the exploration of high-dimensional, non-intuitive design spaces to create ultra-compact devices and advance photonic integrated circuits (PICs) in computing and interconnects. However, practical challenges, such as suboptimal device performance, limited manufacturability, high sensitivity to variations, computational inefficiency, and lack of interpretability, have hindered its adoption in commercial hardware. Recent advancements in AI-assisted photonic simulation and design offer transformative potential, accelerating simulations and design generation by orders of magnitude over traditional numerical methods. Despite these breakthroughs, the lack of an open-source, standardized infrastructure and evaluation benchmark limits accessibility and cross-disciplinary collaboration. To address this, we introduce MAPS, a multi-fidelity AI-augmented photonic simulation and inverse design infrastructure designed to bridge this gap. MAPS features three synergistic components: (1) MAPS-Data: A dataset acquisition framework for generating multi-fidelity, richly labeled devices, providing high-quality data for AI-for-optics research. (2) MAPS-Train: A flexible AI-for-photonics training framework offering a hierarchical data loading pipeline, customizable model construction, support for data- and physics-driven losses, and comprehensive evaluations. (3) MAPS-InvDes: An advanced adjoint inverse design toolkit that abstracts complex physics but exposes flexible optimization steps, integrates pre-trained AI models, and incorporates fabrication variation models. This infrastructure MAPS provides a unified, open-source platform for developing, benchmarking, and advancing AI-assisted photonic design workflows, accelerating innovation in photonic hardware optimization and scientific machine learning.