Abstract:Traffic state estimation (TSE) falls methodologically into three categories: model-driven, data-driven, and model-data dual-driven. Model-driven TSE relies on macroscopic traffic flow models originated from hydrodynamics. Data-driven TSE leverages historical sensing data and employs statistical models or machine learning methods to infer traffic state. Model-data dual-driven traffic state estimation attempts to harness the strengths of both aspects to achieve more accurate TSE. From the perspective of mathematical operator theory, TSE can be viewed as a type of operator that maps available measurements of inerested traffic state into unmeasured traffic state variables in real time. For the first time this paper proposes to study real-time freeway TSE in the idea of physics-informed deep operator network (PI-DeepONet), which is an operator-oriented architecture embedding traffic flow models based on deep neural networks. The paper has developed an extended architecture from the original PI-DeepONet. The extended architecture is featured with: (1) the acceptance of 2-D data input so as to support CNN-based computations; (2) the introduction of a nonlinear expansion layer, an attention mechanism, and a MIMO mechanism; (3) dedicated neural network design for adaptive identification of traffic flow model parameters. A traffic state estimator built on the basis of this extended PI-DeepONet architecture was evaluated with respect to a short freeway stretch of NGSIM and a large-scale urban expressway in China, along with other four baseline TSE methods. The evaluation results demonstrated that this novel TSE method outperformed the baseline methods with high-precision estimation results of flow and mean speed.
Abstract:Since the introduction of the SemEval 2020 Task 11 (Martino et al., 2020a), several approaches have been proposed in the literature for classifying propaganda based on the rhetorical techniques used to influence readers. These methods, however, classify one span at a time, ignoring dependencies from the labels of other spans within the same context. In this paper, we approach propaganda technique classification as a Multi-Instance Multi-Label (MIML) learning problem (Zhou et al., 2012) and propose a simple RoBERTa-based model (Zhuang et al., 2021) for classifying all spans in an article simultaneously. Further, we note that, due to the annotation process where annotators classified the spans by following a decision tree, there is an inherent hierarchical relationship among the different techniques, which existing approaches ignore. We incorporate these hierarchical label dependencies by adding an auxiliary classifier for each node in the decision tree to the training objective and ensembling the predictions from the original and auxiliary classifiers at test time. Overall, our model leads to an absolute improvement of 2.47% micro-F1 over the model from the shared task winning team in a cross-validation setup and is the best performing non-ensemble model on the shared task leaderboard.