VQA Natural Language Explanation (VQA-NLE) task aims to explain the decision-making process of VQA models in natural language. Unlike traditional attention or gradient analysis, free-text rationales can be easier to understand and gain users' trust. Existing methods mostly use post-hoc or self-rationalization models to obtain a plausible explanation. However, these frameworks are bottlenecked by the following challenges: 1) the reasoning process cannot be faithfully responded to and suffer from the problem of logical inconsistency. 2) Human-annotated explanations are expensive and time-consuming to collect. In this paper, we propose a new Semi-Supervised VQA-NLE via Self-Critical Learning (S3C), which evaluates the candidate explanations by answering rewards to improve the logical consistency between answers and rationales. With a semi-supervised learning framework, the S3C can benefit from a tremendous amount of samples without human-annotated explanations. A large number of automatic measures and human evaluations all show the effectiveness of our method. Meanwhile, the framework achieves a new state-of-the-art performance on the two VQA-NLE datasets.
The recent contrastive language-image pre-training (CLIP) model has shown great success in a wide range of image-level tasks, revealing remarkable ability for learning powerful visual representations with rich semantics. An open and worthwhile problem is efficiently adapting such a strong model to the video domain and designing a robust video anomaly detector. In this work, we propose VadCLIP, a new paradigm for weakly supervised video anomaly detection (WSVAD) by leveraging the frozen CLIP model directly without any pre-training and fine-tuning process. Unlike current works that directly feed extracted features into the weakly supervised classifier for frame-level binary classification, VadCLIP makes full use of fine-grained associations between vision and language on the strength of CLIP and involves dual branch. One branch simply utilizes visual features for coarse-grained binary classification, while the other fully leverages the fine-grained language-image alignment. With the benefit of dual branch, VadCLIP achieves both coarse-grained and fine-grained video anomaly detection by transferring pre-trained knowledge from CLIP to WSVAD task. We conduct extensive experiments on two commonly-used benchmarks, demonstrating that VadCLIP achieves the best performance on both coarse-grained and fine-grained WSVAD, surpassing the state-of-the-art methods by a large margin. Specifically, VadCLIP achieves 84.51% AP and 88.02% AUC on XD-Violence and UCF-Crime, respectively. Code and features will be released to facilitate future VAD research.
In this work, we construct a large-scale dataset for Ground-to-Aerial Person Search, named G2APS, which contains 31,770 images of 260,559 annotated bounding boxes for 2,644 identities appearing in both of the UAVs and ground surveillance cameras. To our knowledge, this is the first dataset for cross-platform intelligent surveillance applications, where the UAVs could work as a powerful complement for the ground surveillance cameras. To more realistically simulate the actual cross-platform Ground-to-Aerial surveillance scenarios, the surveillance cameras are fixed about 2 meters above the ground, while the UAVs capture videos of persons at different location, with a variety of view-angles, flight attitudes and flight modes. Therefore, the dataset has the following unique characteristics: 1) drastic view-angle changes between query and gallery person images from cross-platform cameras; 2) diverse resolutions, poses and views of the person images under 9 rich real-world scenarios. On basis of the G2APS benchmark dataset, we demonstrate detailed analysis about current two-step and end-to-end person search methods, and further propose a simple yet effective knowledge distillation scheme on the head of the ReID network, which achieves state-of-the-art performances on both of the G2APS and the previous two public person search datasets, i.e., PRW and CUHK-SYSU. The dataset and source code available on \url{https://github.com/yqc123456/HKD_for_person_search}.
Recently, learning-based algorithms have achieved promising performance on cross-spectral image patch matching, which, however, is still far from satisfactory for practical application. On the one hand, a lack of large-scale dataset with diverse scenes haunts its further improvement for learning-based algorithms, whose performances and generalization rely heavily on the dataset size and diversity. On the other hand, more emphasis has been put on feature relation in the spatial domain whereas the scale dependency between features has often been ignored, leading to performance degeneration especially when encountering significant appearance variations for cross-spectral patches. To address these issues, we publish, to be best of our knowledge, the largest visible and Long-wave Infrared (LWIR) image patch matching dataset, termed VL-CMIM, which contains 1300 pairs of strictly aligned visible and LWIR images and over 2 million patch pairs covering diverse scenes such as asteroid, field, country, build, street and water.In addition, a multi-domain feature relation learning network (MD-FRN) is proposed. Input by the features extracted from a four-branch network, both feature relations in spatial and scale domains are learned via a spatial correlation module (SCM) and multi-scale adaptive aggregation module (MSAG), respectively. To further aggregate the multi-domain relations, a deep domain interactive mechanism (DIM) is applied, where the learnt spatial-relation and scale-relation features are exchanged and further input into MSCRM and SCM. This mechanism allows our model to learn interactive cross-domain feature relations, leading to improved robustness to significant appearance changes due to different modality.
Self-supervised sound source localization is usually challenged by the modality inconsistency. In recent studies, contrastive learning based strategies have shown promising to establish such a consistent correspondence between audio and sound sources in visual scenarios. Unfortunately, the insufficient attention to the heterogeneity influence in the different modality features still limits this scheme to be further improved, which also becomes the motivation of our work. In this study, an Induction Network is proposed to bridge the modality gap more effectively. By decoupling the gradients of visual and audio modalities, the discriminative visual representations of sound sources can be learned with the designed Induction Vector in a bootstrap manner, which also enables the audio modality to be aligned with the visual modality consistently. In addition to a visual weighted contrastive loss, an adaptive threshold selection strategy is introduced to enhance the robustness of the Induction Network. Substantial experiments conducted on SoundNet-Flickr and VGG-Sound Source datasets have demonstrated a superior performance compared to other state-of-the-art works in different challenging scenarios. The code is available at https://github.com/Tahy1/AVIN
The aim of image restoration is to recover high-quality images from distorted ones. However, current methods usually focus on a single task (\emph{e.g.}, denoising, deblurring or super-resolution) which cannot address the needs of real-world multi-task processing, especially on mobile devices. Thus, developing an all-in-one method that can restore images from various unknown distortions is a significant challenge. Previous works have employed contrastive learning to learn the degradation representation from observed images, but this often leads to representation drift caused by deficient positive and negative pairs. To address this issue, we propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet) that can effectively capture and utilize accurate degradation representation for image restoration. AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering, without any prior knowledge of degradation information. This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration. To further enhance the performance of the image restoration network and overcome domain gaps caused by unknown distortions, we design a feature transform block (FTB) that aligns domains and refines features with the guidance of the degradation representation. We conduct extensive experiments on multiple distorted datasets, demonstrating the effectiveness of our method and its advantages over state-of-the-art restoration methods both qualitatively and quantitatively.
Video anomaly detection (VAD) has been paid increasing attention due to its potential applications, its current dominant tasks focus on online detecting anomalies% at the frame level, which can be roughly interpreted as the binary or multiple event classification. However, such a setup that builds relationships between complicated anomalous events and single labels, e.g., ``vandalism'', is superficial, since single labels are deficient to characterize anomalous events. In reality, users tend to search a specific video rather than a series of approximate videos. Therefore, retrieving anomalous events using detailed descriptions is practical and positive but few researches focus on this. In this context, we propose a novel task called Video Anomaly Retrieval (VAR), which aims to pragmatically retrieve relevant anomalous videos by cross-modalities, e.g., language descriptions and synchronous audios. Unlike the current video retrieval where videos are assumed to be temporally well-trimmed with short duration, VAR is devised to retrieve long untrimmed videos which may be partially relevant to the given query. To achieve this, we present two large-scale VAR benchmarks, UCFCrime-AR and XDViolence-AR, constructed on top of prevalent anomaly datasets. Meanwhile, we design a model called Anomaly-Led Alignment Network (ALAN) for VAR. In ALAN, we propose an anomaly-led sampling to focus on key segments in long untrimmed videos. Then, we introduce an efficient pretext task to enhance semantic associations between video-text fine-grained representations. Besides, we leverage two complementary alignments to further match cross-modal contents. Experimental results on two benchmarks reveal the challenges of VAR task and also demonstrate the advantages of our tailored method.
Camouflaged object detection (COD), aiming to segment camouflaged objects which exhibit similar patterns with the background, is a challenging task. Most existing works are dedicated to establishing specialized modules to identify camouflaged objects with complete and fine details, while the boundary can not be well located for the lack of object-related semantics. In this paper, we propose a novel ``pre-train, adapt and detect" paradigm to detect camouflaged objects. By introducing a large pre-trained model, abundant knowledge learned from massive multi-modal data can be directly transferred to COD. A lightweight parallel adapter is inserted to adjust the features suitable for the downstream COD task. Extensive experiments on four challenging benchmark datasets demonstrate that our method outperforms existing state-of-the-art COD models by large margins. Moreover, we design a multi-task learning scheme for tuning the adapter to exploit the shareable knowledge across different semantic classes. Comprehensive experimental results showed that the generalization ability of our model can be substantially improved with multi-task adapter initialization on source tasks and multi-task adaptation on target tasks.
Egocentric action anticipation is a challenging task that aims to make advanced predictions of future actions from current and historical observations in the first-person view. Most existing methods focus on improving the model architecture and loss function based on the visual input and recurrent neural network to boost the anticipation performance. However, these methods, which merely consider visual information and rely on a single network architecture, gradually reach a performance plateau. In order to fully understand what has been observed and capture the dependencies between current observations and future actions well enough, we propose a novel visual-semantic fusion enhanced and Transformer GRU-based action anticipation framework in this paper. Firstly, high-level semantic information is introduced to improve the performance of action anticipation for the first time. We propose to use the semantic features generated based on the class labels or directly from the visual observations to augment the original visual features. Secondly, an effective visual-semantic fusion module is proposed to make up for the semantic gap and fully utilize the complementarity of different modalities. Thirdly, to take advantage of both the parallel and autoregressive models, we design a Transformer based encoder for long-term sequential modeling and a GRU-based decoder for flexible iteration decoding. Extensive experiments on two large-scale first-person view datasets, i.e., EPIC-Kitchens and EGTEA Gaze+, validate the effectiveness of our proposed method, which achieves new state-of-the-art performance, outperforming previous approaches by a large margin.