Carnegie Mellon University
Abstract:Accurate cardiac computing, analysis and modeling from multi-modality images are important for the diagnosis and treatment of cardiac disease. Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is a promising technique to visualize and quantify myocardial infarction (MI) and atrial scars. Automating quantification of MI and atrial scars can be challenging due to the low image quality and complex enhancement patterns of LGE MRI. Moreover, compared with the other sequences LGE MRIs with gold standard labels are particularly limited, which represents another obstacle for developing novel algorithms for automatic segmentation and quantification of LGE MRIs. This chapter aims to summarize the state-of-the-art and our recent advanced contributions on deep learning based multi-modality cardiac image analysis. Firstly, we introduce two benchmark works for multi-sequence cardiac MRI based myocardial and pathology segmentation. Secondly, two novel frameworks for left atrial scar segmentation and quantification from LGE MRI were presented. Thirdly, we present three unsupervised domain adaptation techniques for cross-modality cardiac image segmentation.
Abstract:Transformer-based models have proven to be powerful in many natural language, computer vision, and speech recognition applications. It is expensive to train these types of models due to unfixed input length, complex computation, and large numbers of parameters. Existing systems either only focus on efficient inference or optimize only BERT-like encoder models. In this paper, we present LightSeq2, a system for efficient training of Transformer-based models on GPUs. We propose a series of GPU optimization techniques tailored to computation flow and memory access patterns of neural layers in Transformers. LightSeq2 supports a variety of network architectures, including BERT (encoder-only), GPT (decoder-only), and Transformer (encoder-decoder). Our experiments on GPUs with varying models and datasets show that LightSeq2 is 1.4-3.5x faster than previous systems. In particular, it gains 308% training speedup compared with existing systems on a large public machine translation benchmark (WMT14 English-German).
Abstract:Automatic text summarization aims to produce a brief but crucial summary for the input documents. Both extractive and abstractive methods have witnessed great success in English datasets in recent years. However, there has been a minimal exploration of text summarization in Chinese, limited by the lack of large-scale datasets. In this paper, we present a large-scale Chinese news summarization dataset CNewSum, which consists of 304,307 documents and human-written summaries for the news feed. It has long documents with high-abstractive summaries, which can encourage document-level understanding and generation for current summarization models. An additional distinguishing feature of CNewSum is that its test set contains adequacy and deducibility annotations for the summaries. The adequacy level measures the degree of summary information covered by the document, and the deducibility indicates the reasoning ability the model needs to generate the summary. These annotations can help researchers analyze and target their model performance bottleneck. We examine recent methods on CNewSum and release our dataset to provide a solid testbed for automatic Chinese summarization research.
Abstract:The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and the growth of margin. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to learning. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verify the theoretical results or through the significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that because our idea can solve these three issues, we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks. Code is available at: https://github.com/lancopku/well-classified-examples-are-underestimated.
Abstract:How do we perform efficient inference while retaining high translation quality? Existing neural machine translation models, such as Transformer, achieve high performance, but they decode words one by one, which is inefficient. Recent non-autoregressive translation models speed up the inference, but their quality is still inferior. In this work, we propose DSLP, a highly efficient and high-performance model for machine translation. The key insight is to train a non-autoregressive Transformer with Deep Supervision and feed additional Layer-wise Predictions. We conducted extensive experiments on four translation tasks (both directions of WMT'14 EN-DE and WMT'16 EN-RO). Results show that our approach consistently improves the BLEU scores compared with respective base models. Specifically, our best variant outperforms the autoregressive model on three translation tasks, while being 14.8 times more efficient in inference.
Abstract:This paper describes the Volctrans' submission to the WMT21 news translation shared task for German->English translation. We build a parallel (i.e., non-autoregressive) translation system using the Glancing Transformer, which enables fast and accurate parallel decoding in contrast to the currently prevailing autoregressive models. To the best of our knowledge, this is the first parallel translation system that can be scaled to such a practical scenario like WMT competition. More importantly, our parallel translation system achieves the best BLEU score (35.0) on German->English translation task, outperforming all strong autoregressive counterparts.
Abstract:Knowledge distillation~(KD) has been proved effective for compressing large-scale pre-trained language models. However, existing methods conduct KD statically, e.g., the student model aligns its output distribution to that of a selected teacher model on the pre-defined training dataset. In this paper, we explore whether a dynamic knowledge distillation that empowers the student to adjust the learning procedure according to its competency, regarding the student performance and learning efficiency. We explore the dynamical adjustments on three aspects: teacher model adoption, data selection, and KD objective adaptation. Experimental results show that (1) proper selection of teacher model can boost the performance of student model; (2) conducting KD with 10% informative instances achieves comparable performance while greatly accelerates the training; (3) the student performance can be boosted by adjusting the supervision contribution of different alignment objective. We find dynamic knowledge distillation is promising and provide discussions on potential future directions towards more efficient KD methods. Our code is available at https://github.com/lancopku/DynamicKD.
Abstract:How to effectively adapt neural machine translation (NMT) models according to emerging cases without retraining? Despite the great success of neural machine translation, updating the deployed models online remains a challenge. Existing non-parametric approaches that retrieve similar examples from a database to guide the translation process are promising but are prone to overfit the retrieved examples. However, non-parametric methods are prone to overfit the retrieved examples. In this work, we propose to learn Kernel-Smoothed Translation with Example Retrieval (KSTER), an effective approach to adapt neural machine translation models online. Experiments on domain adaptation and multi-domain machine translation datasets show that even without expensive retraining, KSTER is able to achieve improvement of 1.1 to 1.5 BLEU scores over the best existing online adaptation methods. The code and trained models are released at https://github.com/jiangqn/KSTER.
Abstract:This paper presents a unified end-to-end frame-work for both streaming and non-streamingspeech translation. While the training recipes for non-streaming speech translation have been mature, the recipes for streaming speechtranslation are yet to be built. In this work, wefocus on developing a unified model (UniST) which supports streaming and non-streaming ST from the perspective of fundamental components, including training objective, attention mechanism and decoding policy. Experiments on the most popular speech-to-text translation benchmark dataset, MuST-C, show that UniST achieves significant improvement for non-streaming ST, and a better-learned trade-off for BLEU score and latency metrics for streaming ST, compared with end-to-end baselines and the cascaded models. We will make our codes and evaluation tools publicly available.
Abstract:Can pre-trained BERT for one language and GPT for another be glued together to translate texts? Self-supervised training using only monolingual data has led to the success of pre-trained (masked) language models in many NLP tasks. However, directly connecting BERT as an encoder and GPT as a decoder can be challenging in machine translation, for GPT-like models lack a cross-attention component that is needed in seq2seq decoders. In this paper, we propose Graformer to graft separately pre-trained (masked) language models for machine translation. With monolingual data for pre-training and parallel data for grafting training, we maximally take advantage of the usage of both types of data. Experiments on 60 directions show that our method achieves average improvements of 5.8 BLEU in x2en and 2.9 BLEU in en2x directions comparing with the multilingual Transformer of the same size.