Abstract:Generative retrieval (GR) has emerged as a promising paradigm in information retrieval (IR). However, most existing GR models are developed and evaluated using a static document collection, and their performance in dynamic corpora where document collections evolve continuously is rarely studied. In this paper, we first reproduce and systematically evaluate various representative GR approaches over dynamic corpora. Through extensive experiments, we reveal that existing GR models with \textit{text-based} docids show superior generalization to unseen documents. We observe that the more fine-grained the docid design in the GR model, the better its performance over dynamic corpora, surpassing BM25 and even being comparable to dense retrieval methods. While GR models with \textit{numeric-based} docids show high efficiency, their performance drops significantly over dynamic corpora. Furthermore, our experiments find that the underperformance of numeric-based docids is partly due to their excessive tendency toward the initial document set, which likely results from overfitting on the training set. We then conduct an in-depth analysis of the best-performing GR methods. We identify three critical advantages of text-based docids in dynamic corpora: (i) Semantic alignment with language models' pretrained knowledge, (ii) Fine-grained docid design, and (iii) High lexical diversity. Building on these insights, we finally propose a novel multi-docid design that leverages both the efficiency of numeric-based docids and the effectiveness of text-based docids, achieving improved performance in dynamic corpus without requiring additional retraining. Our work offers empirical evidence for advancing GR methods over dynamic corpora and paves the way for developing more generalized yet efficient GR models in real-world search engines.
Abstract:Neural surrogate solvers can estimate solutions to partial differential equations in physical problems more efficiently than standard numerical methods, but require extensive high-resolution training data. In this paper, we break this limitation; we introduce a framework for super-resolution learning in solid mechanics problems. Our approach allows one to train a high-resolution neural network using only low-resolution data. Our Equilibrium Conserving Operator (ECO) architecture embeds known physics directly into the network to make up for missing high-resolution information during training. We evaluate this ECO-based super-resolution framework that strongly enforces conservation-laws in the predicted solutions on two working examples: embedded pores in a homogenized matrix and randomly textured polycrystalline materials. ECO eliminates the reliance on high-fidelity data and reduces the upfront cost of data collection by two orders of magnitude, offering a robust pathway for resource-efficient surrogate modeling in materials modeling. ECO is readily generalizable to other physics-based problems.
Abstract:Multimodal representation learning, exemplified by multimodal contrastive learning (MMCL) using image-text pairs, aims to learn powerful representations by aligning cues across modalities. This approach relies on the core assumption that the exemplar image-text pairs constitute two representations of an identical concept. However, recent research has revealed that real-world datasets often exhibit misalignment. There are two distinct viewpoints on how to address this issue: one suggests mitigating the misalignment, and the other leveraging it. We seek here to reconcile these seemingly opposing perspectives, and to provide a practical guide for practitioners. Using latent variable models we thus formalize misalignment by introducing two specific mechanisms: selection bias, where some semantic variables are missing, and perturbation bias, where semantic variables are distorted -- both affecting latent variables shared across modalities. Our theoretical analysis demonstrates that, under mild assumptions, the representations learned by MMCL capture exactly the information related to the subset of the semantic variables invariant to selection and perturbation biases. This provides a unified perspective for understanding misalignment. Based on this, we further offer actionable insights into how misalignment should inform the design of real-world ML systems. We validate our theoretical findings through extensive empirical studies on both synthetic data and real image-text datasets, shedding light on the nuanced impact of misalignment on multimodal representation learning.
Abstract:Generative retrieval has emerged as a novel paradigm that leverages large language models (LLMs) to autoregressively generate document identifiers. Although promising, the mechanisms that underpin its performance and scalability remain largely unclear. We conduct a systematic investigation of training and inference scaling laws in generative retrieval, exploring how model size, training data scale, and inference-time compute jointly influence retrieval performance. To address the lack of suitable metrics, we propose a novel evaluation measure inspired by contrastive entropy and generation loss, providing a continuous performance signal that enables robust comparisons across diverse generative retrieval methods. Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws, especially when paired with larger LLMs. Furthermore, increasing inference computation yields substantial performance gains, revealing that generative retrieval can significantly benefit from higher compute budgets at inference. Across these settings, LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval. Taken together, our findings underscore that model sizes, data availability, and inference computation interact to unlock the full potential of generative retrieval, offering new insights for designing and optimizing future systems.
Abstract:Recovering the underlying Directed Acyclic Graph (DAG) structures from observational data presents a formidable challenge, partly due to the combinatorial nature of the DAG-constrained optimization problem. Recently, researchers have identified gradient vanishing as one of the primary obstacles in differentiable DAG learning and have proposed several DAG constraints to mitigate this issue. By developing the necessary theory to establish a connection between analytic functions and DAG constraints, we demonstrate that analytic functions from the set $\{f(x) = c_0 + \sum_{i=1}^{\infty}c_ix^i | \forall i > 0, c_i > 0; r = \lim_{i\rightarrow \infty}c_{i}/c_{i+1} > 0\}$ can be employed to formulate effective DAG constraints. Furthermore, we establish that this set of functions is closed under several functional operators, including differentiation, summation, and multiplication. Consequently, these operators can be leveraged to create novel DAG constraints based on existing ones. Using these properties, we design a series of DAG constraints and develop an efficient algorithm to evaluate them. Experiments in various settings demonstrate that our DAG constraints outperform previous state-of-the-art comparators. Our implementation is available at https://github.com/zzhang1987/AnalyticDAGLearning.
Abstract:The Copilot for Real-world Experimental Scientist (CRESt) system empowers researchers to control autonomous laboratories through conversational AI, providing a seamless interface for managing complex experimental workflows. We have enhanced CRESt by integrating a multi-agent collaboration mechanism that utilizes the complementary strengths of the ChatGPT and Gemini models for precise image analysis in materials science. This innovative approach significantly improves the accuracy of experimental outcomes by fostering structured debates between the AI models, which enhances decision-making processes in materials phase analysis. Additionally, to evaluate the generalizability of this approach, we tested it on a quantitative task of counting particles. Here, the collaboration between the AI models also led to improved results, demonstrating the versatility and robustness of this method. By harnessing this dual-AI framework, this approach stands as a pioneering method for enhancing experimental accuracy and efficiency in materials research, with applications extending beyond CRESt to broader scientific experimentation and analysis.
Abstract:Graph domain adaptation has emerged as a promising approach to facilitate knowledge transfer across different domains. Recently, numerous models have been proposed to enhance their generalization capabilities in this field. However, there is still no unified library that brings together existing techniques and simplifies their implementation. To fill this gap, we introduce PyGDA, an open-source Python library tailored for graph domain adaptation. As the first comprehensive library in this area, PyGDA covers more than 20 widely used graph domain adaptation methods together with different types of graph datasets. Specifically, PyGDA offers modular components, enabling users to seamlessly build custom models with a variety of commonly used utility functions. To handle large-scale graphs, PyGDA includes support for features such as sampling and mini-batch processing, ensuring efficient computation. In addition, PyGDA also includes comprehensive performance benchmarks and well-documented user-friendly API for both researchers and practitioners. To foster convenient accessibility, PyGDA is released under the MIT license at https://github.com/pygda-team/pygda, and the API documentation is https://pygda.readthedocs.io/en/stable/.
Abstract:Cascade Ranking is a prevalent architecture in large-scale top-k selection systems like recommendation and advertising platforms. Traditional training methods focus on single-stage optimization, neglecting interactions between stages. Recent advances such as RankFlow and FS-LTR have introduced interaction-aware training paradigms but still struggle to 1) align training objectives with the goal of the entire cascade ranking (i.e., end-to-end recall) and 2) learn effective collaboration patterns for different stages. To address these challenges, we propose LCRON, which introduces a novel surrogate loss function derived from the lower bound probability that ground truth items are selected by cascade ranking, ensuring alignment with the overall objective of the system. According to the properties of the derived bound, we further design an auxiliary loss for each stage to drive the reduction of this bound, leading to a more robust and effective top-k selection. LCRON enables end-to-end training of the entire cascade ranking system as a unified network. Experimental results demonstrate that LCRON achieves significant improvement over existing methods on public benchmarks and industrial applications, addressing key limitations in cascade ranking training and significantly enhancing system performance.
Abstract:The remarkable achievements of large language models (LLMs) have led many to conclude that they exhibit a form of intelligence. This is as opposed to explanations of their capabilities based on their ability to perform relatively simple manipulations of vast volumes of data. To illuminate the distinction between these explanations, we introduce a novel generative model that generates tokens on the basis of human interpretable concepts represented as latent discrete variables. Under mild conditions, even when the mapping from the latent space to the observed space is non-invertible, we establish an identifiability result: the representations learned by LLMs through next-token prediction can be approximately modeled as the logarithm of the posterior probabilities of these latent discrete concepts, up to an invertible linear transformation. This theoretical finding not only provides evidence that LLMs capture underlying generative factors, but also strongly reinforces the linear representation hypothesis, which posits that LLMs learn linear representations of human-interpretable concepts. Empirically, we validate our theoretical results through evaluations on both simulation data and the Pythia, Llama, and DeepSeek model families.
Abstract:Despite the advancements made in Visual Large Language Models (VLLMs), like text Large Language Models (LLMs), they have limitations in addressing questions that require real-time information or are knowledge-intensive. Indiscriminately adopting Retrieval Augmented Generation (RAG) techniques is an effective yet expensive way to enable models to answer queries beyond their knowledge scopes. To mitigate the dependence on retrieval and simultaneously maintain, or even improve, the performance benefits provided by retrieval, we propose a method to detect the knowledge boundary of VLLMs, allowing for more efficient use of techniques like RAG. Specifically, we propose a method with two variants that fine-tunes a VLLM on an automatically constructed dataset for boundary identification. Experimental results on various types of Visual Question Answering datasets show that our method successfully depicts a VLLM's knowledge boundary based on which we are able to reduce indiscriminate retrieval while maintaining or improving the performance. In addition, we show that the knowledge boundary identified by our method for one VLLM can be used as a surrogate boundary for other VLLMs. Code will be released at https://github.com/Chord-Chen-30/VLLM-KnowledgeBoundary