The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia, USA
Abstract:To meet the robust and high-speed communication requirements of the sixth-generation (6G) mobile communication system in complex scenarios, sensing- and artificial intelligence (AI)-based digital twin channel (DTC) techniques become a promising approach to reduce system overhead. In this paper, we propose an environment-specific channel subspace basis (EB)-aided partial-to-whole channel state information (CSI) prediction method (EB-P2WCP) for realizing DTC-enabled low-overhead channel prediction. Specifically, EB is utilized to characterize the static properties of the electromagnetic environment, which is extracted from the digital twin map, serving as environmental information prior to the prediction task. Then, we fuse EB with real-time estimated local CSI to predict the entire spatial-frequency domain channel for both the present and future time instances. Hence, an EB-based partial-to-whole CSI prediction network (EB-P2WNet) is designed to achieve a robust channel prediction scheme in various complex scenarios. Simulation results indicate that incorporating EB provides significant benefits under low signal-to-noise ratio and pilot ratio conditions, achieving a reduction of up to 50% in pilot overhead. Additionally, the proposed method maintains robustness against multi-user interference, tolerating 3-meter localization errors with only a 0.5 dB NMSE increase, and predicts CSI for the next channel coherent time within 1.3 milliseconds.
Abstract:This study proposes a behavior-specific filtering method to improve behavior classification accuracy in Precision Livestock Farming. While traditional filtering methods, such as wavelet denoising, achieved an accuracy of 91.58%, they apply uniform processing to all behaviors. In contrast, the proposed behavior-specific filtering method combines Wavelet Denoising with a Low Pass Filter, tailored to active and inactive pig behaviors, and achieved a peak accuracy of 94.73%. These results highlight the effectiveness of behavior-specific filtering in enhancing animal behavior monitoring, supporting better health management and farm efficiency.
Abstract:Emotion recognition through body movements has emerged as a compelling and privacy-preserving alternative to traditional methods that rely on facial expressions or physiological signals. Recent advancements in 3D skeleton acquisition technologies and pose estimation algorithms have significantly enhanced the feasibility of emotion recognition based on full-body motion. This survey provides a comprehensive and systematic review of skeleton-based emotion recognition techniques. First, we introduce psychological models of emotion and examine the relationship between bodily movements and emotional expression. Next, we summarize publicly available datasets, highlighting the differences in data acquisition methods and emotion labeling strategies. We then categorize existing methods into posture-based and gait-based approaches, analyzing them from both data-driven and technical perspectives. In particular, we propose a unified taxonomy that encompasses four primary technical paradigms: Traditional approaches, Feat2Net, FeatFusionNet, and End2EndNet. Representative works within each category are reviewed and compared, with benchmarking results across commonly used datasets. Finally, we explore the extended applications of emotion recognition in mental health assessment, such as detecting depression and autism, and discuss the open challenges and future research directions in this rapidly evolving field.
Abstract:Fine-tuning vision language models (VLMs) has achieved remarkable performance across various downstream tasks; yet, it requires access to model gradients through backpropagation (BP), making them unsuitable for memory-constrained, inference-only edge devices. To address this limitation, previous work has explored various BP-free fine-tuning methods. However, these approaches often rely on high-variance evolutionary strategies (ES) or zeroth-order (ZO) optimization, and often fail to achieve satisfactory performance. In this paper, we propose a hybrid Sharpness-aware Zeroth-order optimization (SharpZO) approach, specifically designed to enhance the performance of ZO VLM fine-tuning via a sharpness-aware warm-up training. SharpZO features a two-stage optimization process: a sharpness-aware ES stage that globally explores and smooths the loss landscape to construct a strong initialization, followed by a fine-grained local search via sparse ZO optimization. The entire optimization relies solely on forward passes. Detailed theoretical analysis and extensive experiments on CLIP models demonstrate that SharpZO significantly improves accuracy and convergence speed, achieving up to 7% average gain over state-of-the-art forward-only methods.
Abstract:As privacy protection gains increasing importance, more models are being trained on edge devices and subsequently merged into the central server through Federated Learning (FL). However, current research overlooks the impact of network topology, physical distance, and data heterogeneity on edge devices, leading to issues such as increased latency and degraded model performance. To address these issues, we propose a new federated learning scheme on edge devices that called Federated Learning with Encrypted Data Sharing(FedEDS). FedEDS uses the client model and the model's stochastic layer to train the data encryptor. The data encryptor generates encrypted data and shares it with other clients. The client uses the corresponding client's stochastic layer and encrypted data to train and adjust the local model. FedEDS uses the client's local private data and encrypted shared data from other clients to train the model. This approach accelerates the convergence speed of federated learning training and mitigates the negative impact of data heterogeneity, making it suitable for application services deployed on edge devices requiring rapid convergence. Experiments results show the efficacy of FedEDS in promoting model performance.
Abstract:Distributed training is essential for scaling the training of large neural network models, such as large language models (LLMs), across thousands of GPUs. However, the complexity of distributed training programs makes them particularly prone to silent bugs, which do not produce explicit error signal but lead to incorrect training outcome. Effectively detecting and localizing such silent bugs in distributed training is challenging. Common debugging practice using metrics like training loss or gradient norm curves can be inefficient and ineffective. Additionally, obtaining intermediate tensor values and determining whether they are correct during silent bug localization is difficult, particularly in the context of low-precision training. To address those challenges, we design and implement TTrace, the first system capable of detecting and localizing silent bugs in distributed training. TTrace collects intermediate tensors from distributing training in a fine-grained manner and compares them against those from a trusted single-device reference implementation. To properly compare the floating-point values in the tensors, we propose novel mathematical analysis that provides a guideline for setting thresholds, enabling TTrace to distinguish bug-induced errors from floating-point round-off errors. Experimental results demonstrate that TTrace effectively detects 11 existing bugs and 3 new bugs in the widely used Megatron-LM framework, while requiring fewer than 10 lines of code change. TTrace is effective in various training recipes, including low-precision recipes involving BF16 and FP8.
Abstract:Manipulating elasto-plastic objects remains a significant challenge due to severe self-occlusion, difficulties of representation, and complicated dynamics. This work proposes a novel framework for elasto-plastic object manipulation with a quasi-static assumption for motions, leveraging 3D occupancy to represent such objects, a learned dynamics model trained with 3D occupancy, and a learning-based predictive control algorithm to address these challenges effectively. We build a novel data collection platform to collect full spatial information and propose a pipeline for generating a 3D occupancy dataset. To infer the 3D occupancy during manipulation, an occupancy prediction network is trained with multiple RGB images supervised by the generated dataset. We design a deep neural network empowered by a 3D convolution neural network (CNN) and a graph neural network (GNN) to predict the complex deformation with the inferred 3D occupancy results. A learning-based predictive control algorithm is introduced to plan the robot actions, incorporating a novel shape-based action initialization module specifically designed to improve the planner efficiency. The proposed framework in this paper can successfully shape the elasto-plastic objects into a given goal shape and has been verified in various experiments both in simulation and the real world.
Abstract:Human cognition typically involves thinking through abstract, fluid concepts rather than strictly using discrete linguistic tokens. Current reasoning models, however, are constrained to reasoning within the boundaries of human language, processing discrete token embeddings that represent fixed points in the semantic space. This discrete constraint restricts the expressive power and upper potential of such reasoning models, often causing incomplete exploration of reasoning paths, as standard Chain-of-Thought (CoT) methods rely on sampling one token per step. In this work, we introduce Soft Thinking, a training-free method that emulates human-like "soft" reasoning by generating soft, abstract concept tokens in a continuous concept space. These concept tokens are created by the probability-weighted mixture of token embeddings, which form the continuous concept space, enabling smooth transitions and richer representations that transcend traditional discrete boundaries. In essence, each generated concept token encapsulates multiple meanings from related discrete tokens, implicitly exploring various reasoning paths to converge effectively toward the correct answer. Empirical evaluations on diverse mathematical and coding benchmarks consistently demonstrate the effectiveness and efficiency of Soft Thinking, improving pass@1 accuracy by up to 2.48 points while simultaneously reducing token usage by up to 22.4% compared to standard CoT. Qualitative analysis further reveals that Soft Thinking outputs remain highly interpretable and readable, highlighting the potential of Soft Thinking to break the inherent bottleneck of discrete language-based reasoning. Code is available at https://github.com/eric-ai-lab/Soft-Thinking.
Abstract:Large Language Models (LLMs) demonstrate strong reasoning and task planning capabilities but remain fundamentally limited in physical interaction modeling. Existing approaches integrate perception via Vision-Language Models (VLMs) or adaptive decision-making through Reinforcement Learning (RL), but they fail to capture dynamic object interactions or require task-specific training, limiting their real-world applicability. We introduce APEX (Anticipatory Physics-Enhanced Execution), a framework that equips LLMs with physics-driven foresight for real-time task planning. APEX constructs structured graphs to identify and model the most relevant dynamic interactions in the environment, providing LLMs with explicit physical state updates. Simultaneously, APEX provides low-latency forward simulations of physically feasible actions, allowing LLMs to select optimal strategies based on predictive outcomes rather than static observations. We evaluate APEX on three benchmarks designed to assess perception, prediction, and decision-making: (1) Physics Reasoning Benchmark, testing causal inference and object motion prediction; (2) Tetris, evaluating whether physics-informed prediction enhances decision-making performance in long-horizon planning tasks; (3) Dynamic Obstacle Avoidance, assessing the immediate integration of perception and action feasibility analysis. APEX significantly outperforms standard LLMs and VLM-based models, demonstrating the necessity of explicit physics reasoning for bridging the gap between language-based intelligence and real-world task execution. The source code and experiment setup are publicly available at https://github.com/hwj20/APEX_EXP .
Abstract:The density peaks clustering (DPC) algorithm has attracted considerable attention for its ability to detect arbitrarily shaped clusters based on a simple yet effective assumption. Recent advancements integrating granular-ball (GB) computing with DPC have led to the GB-based DPC (GBDPC) algorithm, which improves computational efficiency. However, GBDPC demonstrates limitations when handling complex clustering tasks, particularly those involving data with complex manifold structures or non-uniform density distributions. To overcome these challenges, this paper proposes the local GB quality peaks clustering (LGBQPC) algorithm, which offers comprehensive improvements to GBDPC in both GB generation and clustering processes based on the principle of justifiable granularity (POJG). Firstly, an improved GB generation method, termed GB-POJG+, is developed, which systematically refines the original GB-POJG in four key aspects: the objective function, termination criterion for GB division, definition of abnormal GB, and granularity level adaptation strategy. GB-POJG+ simplifies parameter configuration by requiring only a single penalty coefficient and ensures high-quality GB generation while maintaining the number of generated GBs within an acceptable range. In the clustering phase, two key innovations are introduced based on the GB k-nearest neighbor graph: relative GB quality for density estimation and geodesic distance for GB distance metric. These modifications substantially improve the performance of GBDPC on datasets with complex manifold structures or non-uniform density distributions. Extensive numerical experiments on 40 benchmark datasets, including both synthetic and publicly available datasets, validate the superior performance of the proposed LGBQPC algorithm.