Devision of Biostatistics, School of Public Health, University of Minnesota
Abstract:Recent attempts at source tracing for codec-based deepfake speech (CodecFake), generated by neural audio codec-based speech generation (CoSG) models, have exhibited suboptimal performance. However, how to train source tracing models using simulated CoSG data while maintaining strong performance on real CoSG-generated audio remains an open challenge. In this paper, we show that models trained solely on codec-resynthesized data tend to overfit to non-speech regions and struggle to generalize to unseen content. To mitigate these challenges, we introduce the Semantic-Acoustic Source Tracing Network (SASTNet), which jointly leverages Whisper for semantic feature encoding and Wav2vec2 with AudioMAE for acoustic feature encoding. Our proposed SASTNet achieves state-of-the-art performance on the CoSG test set of the CodecFake+ dataset, demonstrating its effectiveness for reliable source tracing.
Abstract:We present a comprehensive analysis of the embedding extractors (frontends) developed by the ABC team for the audio track of NIST SRE 2024. We follow the two scenarios imposed by NIST: using only a provided set of telephone recordings for training (fixed) or adding publicly available data (open condition). Under these constraints, we develop the best possible speaker embedding extractors for the pre-dominant conversational telephone speech (CTS) domain. We explored architectures based on ResNet with different pooling mechanisms, recently introduced ReDimNet architecture, as well as a system based on the XLS-R model, which represents the family of large pre-trained self-supervised models. In open condition, we train on VoxBlink2 dataset, containing 110 thousand speakers across multiple languages. We observed a good performance and robustness of VoxBlink-trained models, and our experiments show practical recipes for developing state-of-the-art frontends for speaker recognition.
Abstract:Recent advances in neural audio codec-based speech generation (CoSG) models have produced remarkably realistic audio deepfakes. We refer to deepfake speech generated by CoSG systems as codec-based deepfake, or CodecFake. Although existing anti-spoofing research on CodecFake predominantly focuses on verifying the authenticity of audio samples, almost no attention was given to tracing the CoSG used in generating these deepfakes. In CodecFake generation, processes such as speech-to-unit encoding, discrete unit modeling, and unit-to-speech decoding are fundamentally based on neural audio codecs. Motivated by this, we introduce source tracing for CodecFake via neural audio codec taxonomy, which dissects neural audio codecs to trace CoSG. Our experimental results on the CodecFake+ dataset provide promising initial evidence for the feasibility of CodecFake source tracing while also highlighting several challenges that warrant further investigation.
Abstract:High-Dynamic-Range Wide-Color-Gamut (HDR-WCG) technology is becoming increasingly prevalent, intensifying the demand for converting Standard Dynamic Range (SDR) content to HDR. Existing methods primarily rely on fixed tone mapping operators, which are inadequate for handling SDR inputs with diverse styles commonly found in real-world scenarios. To address this challenge, we propose a generalized SDR-to-HDR method that handles diverse styles in real-world SDR content, termed Realistic Style Disentangled Representation Learning (RealRep). By disentangling luminance and chrominance, we analyze the intrinsic differences between contents with varying styles and propose a disentangled multi-view style representation learning method. This approach captures the guidance prior of true luminance and chrominance distributions across different styles, even when the SDR style distributions exhibit significant variations, thereby establishing a robust embedding space for inverse tone mapping. Motivated by the difficulty of directly utilizing degradation representation priors, we further introduce the Degradation-Domain Aware Controlled Mapping Network (DDACMNet), a two-stage framework that performs adaptive hierarchical mapping guided by a control-aware normalization mechanism. DDACMNet dynamically modulates the mapping process via degradation-conditioned hierarchical features, enabling robust adaptation across diverse degradation domains. Extensive experiments show that RealRep consistently outperforms state-of-the-art methods with superior generalization and perceptually faithful HDR color gamut reconstruction.
Abstract:Speed-of-sound (SoS) is a biomechanical characteristic of tissue, and its imaging can provide a promising biomarker for diagnosis. Reconstructing SoS images from ultrasound acquisitions can be cast as a limited-angle computed-tomography problem, with Variational Networks being a promising model-based deep learning solution. Some acquired data frames may, however, get corrupted by noise due to, e.g., motion, lack of contact, and acoustic shadows, which in turn negatively affects the resulting SoS reconstructions. We propose to use the uncertainty in SoS reconstructions to attribute trust to each individual acquired frame. Given multiple acquisitions, we then use an uncertainty based automatic selection among these retrospectively, to improve diagnostic decisions. We investigate uncertainty estimation based on Monte Carlo Dropout and Bayesian Variational Inference. We assess our automatic frame selection method for differential diagnosis of breast cancer, distinguishing between benign fibroadenoma and malignant carcinoma. We evaluate 21 lesions classified as BI-RADS~4, which represents suspicious cases for probable malignancy. The most trustworthy frame among four acquisitions of each lesion was identified using uncertainty based criteria. Selecting a frame informed by uncertainty achieved an area under curve of 76% and 80% for Monte Carlo Dropout and Bayesian Variational Inference, respectively, superior to any uncertainty-uninformed baselines with the best one achieving 64%. A novel use of uncertainty estimation is proposed for selecting one of multiple data acquisitions for further processing and decision making.
Abstract:Lane detection is a critical component of Advanced Driver Assistance Systems (ADAS). Existing lane detection algorithms generally perform well under favorable weather conditions. However, their performance degrades significantly in adverse conditions, such as fog, which increases the risk of traffic accidents. This challenge is compounded by the lack of specialized datasets and methods designed for foggy environments. To address this, we introduce the FoggyLane dataset, captured in real-world foggy scenarios, and synthesize two additional datasets, FoggyCULane and FoggyTusimple, from existing popular lane detection datasets. Furthermore, we propose a robust Fog-Enhanced Network for lane detection, incorporating a Global Feature Fusion Module (GFFM) to capture global relationships in foggy images, a Kernel Feature Fusion Module (KFFM) to model the structural and positional relationships of lane instances, and a Low-level Edge Enhanced Module (LEEM) to address missing edge details in foggy conditions. Comprehensive experiments demonstrate that our method achieves state-of-the-art performance, with F1-scores of 95.04 on FoggyLane, 79.85 on FoggyCULane, and 96.95 on FoggyTusimple. Additionally, with TensorRT acceleration, the method reaches a processing speed of 38.4 FPS on the NVIDIA Jetson AGX Orin, confirming its real-time capabilities and robustness in foggy environments.
Abstract:This paper presents LITE, an LLM-based evaluation method designed for efficient and flexible assessment of taxonomy quality. To address challenges in large-scale taxonomy evaluation, such as efficiency, fairness, and consistency, LITE adopts a top-down hierarchical evaluation strategy, breaking down the taxonomy into manageable substructures and ensuring result reliability through cross-validation and standardized input formats. LITE also introduces a penalty mechanism to handle extreme cases and provides both quantitative performance analysis and qualitative insights by integrating evaluation metrics closely aligned with task objectives. Experimental results show that LITE demonstrates high reliability in complex evaluation tasks, effectively identifying semantic errors, logical contradictions, and structural flaws in taxonomies, while offering directions for improvement. Code is available at https://github.com/Zhang-l-i-n/TAXONOMY_DETECT .
Abstract:As large language models (LLMs) advance, efficient knowledge evaluation becomes crucial to verifying their capabilities. Traditional methods, relying on benchmarks, face limitations such as high resource costs and information loss. We propose the Large-scale Reference-based Efficient Knowledge Evaluation for Large Language Model (RECKON), which directly uses reference data to evaluate models. RECKON organizes unstructured data into manageable units and generates targeted questions for each cluster, improving evaluation accuracy and efficiency. Experimental results show that RECKON reduces resource consumption by 56.5% compared to traditional methods while achieving over 97% accuracy across various domains, including world knowledge, code, legal, and biomedical datasets. Code is available at https://github.com/MikeGu721/reckon
Abstract:Multimodal Large Language Models (MLLMs) have shown remarkable capabilities in video content understanding but still struggle with fine-grained motion comprehension. To comprehensively assess the motion understanding ability of existing MLLMs, we introduce FAVOR-Bench, comprising 1,776 videos with structured manual annotations of various motions. Our benchmark includes both close-ended and open-ended tasks. For close-ended evaluation, we carefully design 8,184 multiple-choice question-answer pairs spanning six distinct sub-tasks. For open-ended evaluation, we develop both a novel cost-efficient LLM-free and a GPT-assisted caption assessment method, where the former can enhance benchmarking interpretability and reproducibility. Comprehensive experiments with 21 state-of-the-art MLLMs reveal significant limitations in their ability to comprehend and describe detailed temporal dynamics in video motions. To alleviate this limitation, we further build FAVOR-Train, a dataset consisting of 17,152 videos with fine-grained motion annotations. The results of finetuning Qwen2.5-VL on FAVOR-Train yield consistent improvements on motion-related tasks of TVBench, MotionBench and our FAVOR-Bench. Comprehensive assessment results demonstrate that the proposed FAVOR-Bench and FAVOR-Train provide valuable tools to the community for developing more powerful video understanding models. Project page: \href{https://favor-bench.github.io/}{https://favor-bench.github.io/}.
Abstract:Multimodal Large Language Models (MLLMs) are becoming increasingly popular, while the high computational cost associated with multimodal data input, particularly from visual tokens, poses a significant challenge. Existing training-based token compression methods improve inference efficiency but require costly retraining, while training-free methods struggle to maintain performance when aggressively reducing token counts. In this study, we reveal that the performance degradation of MLLM closely correlates with the accelerated loss of information in the attention output matrix. This insight introduces a novel information-preserving perspective, making it possible to maintain performance even under extreme token compression. Based on this finding, we propose TokenCarve, a training-free, plug-and-play, two-stage token compression framework. The first stage employs an Information-Preservation-Guided Selection (IPGS) strategy to prune low-information tokens, while the second stage further leverages IPGS to guide token merging, minimizing information loss. Extensive experiments on 11 datasets and 2 model variants demonstrate the effectiveness of TokenCarve. It can even reduce the number of visual tokens to 22.2% of the original count, achieving a 1.23x speedup in inference, a 64% reduction in KV cache storage, and only a 1.54% drop in accuracy. Our code is available at https://github.com/ShawnTan86/TokenCarve.