Adobe Research
Abstract:Deformable retinal image registration is notoriously difficult due to large homogeneous regions and sparse but critical vascular features, which cause limited gradient signals in standard learning-based frameworks. In this paper, we introduce Gaussian Primitive Optimization (GPO), a novel iterative framework that performs structured message passing to overcome these challenges. After an initial coarse alignment, we extract keypoints at salient anatomical structures (e.g., major vessels) to serve as a minimal set of descriptor-based control nodes (DCN). Each node is modelled as a Gaussian primitive with trainable position, displacement, and radius, thus adapting its spatial influence to local deformation scales. A K-Nearest Neighbors (KNN) Gaussian interpolation then blends and propagates displacement signals from these information-rich nodes to construct a globally coherent displacement field; focusing interpolation on the top (K) neighbors reduces computational overhead while preserving local detail. By strategically anchoring nodes in high-gradient regions, GPO ensures robust gradient flow, mitigating vanishing gradient signal in textureless areas. The framework is optimized end-to-end via a multi-term loss that enforces both keypoint consistency and intensity alignment. Experiments on the FIRE dataset show that GPO reduces the target registration error from 6.2\,px to ~2.4\,px and increases the AUC at 25\,px from 0.770 to 0.938, substantially outperforming existing methods. The source code can be accessed via https://github.com/xintian-99/GPOreg.
Abstract:Complex and diverse ultrastructural features can indicate the type, progression, and prognosis of kidney diseases. Recently, computational pathology combined with deep learning methods has shown tremendous potential in advancing automatic morphological analysis of glomerular ultrastructure. However, current research predominantly focuses on the recognition of individual ultrastructure, which makes it challenging to meet practical diagnostic needs. In this study, we propose the glomerular morphometry framework of ultrastructural characterization (Glo-DMU), which is grounded on three deep models: the ultrastructure segmentation model, the glomerular filtration barrier region classification model, and the electron-dense deposits detection model. Following the conventional protocol of renal biopsy diagnosis, this framework simultaneously quantifies the three most widely used ultrastructural features: the thickness of glomerular basement membrane, the degree of foot process effacement, and the location of electron-dense deposits. We evaluated the 115 patients with 9 renal pathological types in real-world diagnostic scenarios, demonstrating good consistency between automatic quantification results and morphological descriptions in the pathological reports. Glo-DMU possesses the characteristics of full automation, high precision, and high throughput, quantifying multiple ultrastructural features simultaneously, and providing an efficient tool for assisting renal pathologists.
Abstract:Knowledge editing (KE) provides a scalable approach for updating factual knowledge in large language models without full retraining. While previous studies have demonstrated effectiveness in general domains and medical QA tasks, little attention has been paid to KE in multimodal medical scenarios. Unlike text-only settings, medical KE demands integrating updated knowledge with visual reasoning to support safe and interpretable clinical decisions. To address this gap, we propose MultiMedEdit, the first benchmark tailored to evaluating KE in clinical multimodal tasks. Our framework spans both understanding and reasoning task types, defines a three-dimensional metric suite (reliability, generality, and locality), and supports cross-paradigm comparisons across general and domain-specific models. We conduct extensive experiments under single-editing and lifelong-editing settings. Results suggest that current methods struggle with generalization and long-tail reasoning, particularly in complex clinical workflows. We further present an efficiency analysis (e.g., edit latency, memory footprint), revealing practical trade-offs in real-world deployment across KE paradigms. Overall, MultiMedEdit not only reveals the limitations of current approaches but also provides a solid foundation for developing clinically robust knowledge editing techniques in the future.
Abstract:Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) are emerging as a powerful paradigm for solving complex, multifaceted problems. However, the potential of these systems is often constrained by the prevalent plan-and-execute framework, which suffers from critical limitations: rigid plan execution, static agent capabilities, and inefficient communication. These weaknesses hinder their adaptability and robustness in dynamic environments. This paper introduces Aime, a novel multi-agent framework designed to overcome these challenges through dynamic, reactive planning and execution. Aime replaces the conventional static workflow with a fluid and adaptive architecture. Its core innovations include: (1) a Dynamic Planner that continuously refines the overall strategy based on real-time execution feedback; (2) an Actor Factory that implements Dynamic Actor instantiation, assembling specialized agents on-demand with tailored tools and knowledge; and (3) a centralized Progress Management Module that serves as a single source of truth for coherent, system-wide state awareness. We empirically evaluated Aime on a diverse suite of benchmarks spanning general reasoning (GAIA), software engineering (SWE-bench Verified), and live web navigation (WebVoyager). The results demonstrate that Aime consistently outperforms even highly specialized state-of-the-art agents in their respective domains. Its superior adaptability and task success rate establish Aime as a more resilient and effective foundation for multi-agent collaboration.
Abstract:With the development of Embodied Artificial intelligence, the end-to-end control policy such as Vision-Language-Action (VLA) model has become the mainstream. Existing VLA models faces expensive computing/storage cost, which need to be optimized. Quantization is considered as the most effective method which can not only reduce the memory cost but also achieve computation acceleration. However, we find the token alignment of VLA models hinders the application of existing quantization methods. To address this, we proposed an optimized framework called EaqVLA, which apply encoding-aligned quantization to VLA models. Specifically, we propose an complete analysis method to find the misalignment in various granularity. Based on the analysis results, we propose a mixed precision quantization with the awareness of encoding alignment. Experiments shows that the porposed EaqVLA achieves better quantization performance (with the minimal quantization loss for end-to-end action control and xxx times acceleration) than existing quantization methods.
Abstract:Achieving generalizable and precise robotic manipulation across diverse environments remains a critical challenge, largely due to limitations in spatial perception. While prior imitation-learning approaches have made progress, their reliance on raw RGB inputs and handcrafted features often leads to overfitting and poor 3D reasoning under varied lighting, occlusion, and object conditions. In this paper, we propose a unified framework that couples robust multimodal perception with reliable grasp prediction. Our architecture fuses domain-randomized augmentation, monocular depth estimation, and a depth-aware 6-DoF Grasp Prompt into a single spatial representation for downstream action planning. Conditioned on this encoding and a high-level task prompt, our diffusion-based policy yields precise action sequences, achieving up to 40% improvement in grasp success and 45% higher task success rates under environmental variation. These results demonstrate that spatially grounded perception, paired with diffusion-based imitation learning, offers a scalable and robust solution for general-purpose robotic grasping.
Abstract:Neural fields are now the central focus of research in 3D vision and computer graphics. Existing methods mainly focus on various scene representations, such as neural points and 3D Gaussians. However, few works have studied the rendering process to enhance the neural fields. In this work, we propose a plug-in method named K-Buffers that leverages multiple buffers to improve the rendering performance. Our method first renders K buffers from scene representations and constructs K pixel-wise feature maps. Then, We introduce a K-Feature Fusion Network (KFN) to merge the K pixel-wise feature maps. Finally, we adopt a feature decoder to generate the rendering image. We also introduce an acceleration strategy to improve rendering speed and quality. We apply our method to well-known radiance field baselines, including neural point fields and 3D Gaussian Splatting (3DGS). Extensive experiments demonstrate that our method effectively enhances the rendering performance of neural point fields and 3DGS.
Abstract:Trustworthy evaluation methods for code snippets play a crucial role in neural code generation. Traditional methods, which either rely on reference solutions or require executable test cases, have inherent limitation in flexibility and scalability. The recent LLM-as-Judge methodology offers a promising alternative by directly evaluating functional consistency between the problem description and the generated code. To systematically understand the landscape of these LLM-as-Judge methods, we conduct a comprehensive empirical study across three diverse datasets. Our investigation reveals the pros and cons of two categories of LLM-as-Judge methods: the methods based on general foundation models can achieve good performance but require complex prompts and lack explainability, while the methods based on reasoning foundation models provide better explainability with simpler prompts but demand substantial computational resources due to their large parameter sizes. To address these limitations, we propose CODE-DITING, a novel code evaluation method that balances accuracy, efficiency and explainability. We develop a data distillation framework that effectively transfers reasoning capabilities from DeepSeek-R1671B to our CODE-DITING 1.5B and 7B models, significantly enhancing evaluation explainability and reducing the computational cost. With the majority vote strategy in the inference process, CODE-DITING 1.5B outperforms all models with the same magnitude of parameters and achieves performance which would normally exhibit in a model with 5 times of parameter scale. CODE-DITING 7B surpasses GPT-4o and DeepSeek-V3 671B, even though it only uses 1% of the parameter volume of these large models. Further experiments show that CODEDITING is robust to preference leakage and can serve as a promising alternative for code evaluation.
Abstract:Mesh reconstruction is a cornerstone process across various applications, including in-silico trials, digital twins, surgical planning, and navigation. Recent advancements in deep learning have notably enhanced mesh reconstruction speeds. Yet, traditional methods predominantly rely on deforming a standardised template mesh for individual subjects, which overlooks the unique anatomical variations between them, and may compromise the fidelity of the reconstructions. In this paper, we propose an adaptive-template-based mesh reconstruction network (ATMRN), which generates adaptive templates from the given images for the subsequent deformation, moving beyond the constraints of a singular, fixed template. Our approach, validated on cortical magnetic resonance (MR) images from the OASIS dataset, sets a new benchmark in voxel-to-cortex mesh reconstruction, achieving an average symmetric surface distance of 0.267mm across four cortical structures. Our proposed method is generic and can be easily transferred to other image modalities and anatomical structures.
Abstract:Ambiguity remains a fundamental challenge in Natural Language Processing (NLP) due to the inherent complexity and flexibility of human language. With the advent of Large Language Models (LLMs), addressing ambiguity has become even more critical due to their expanded capabilities and applications. In the context of Conversational Question Answering (CQA), this paper explores the definition, forms, and implications of ambiguity for language driven systems, particularly in the context of LLMs. We define key terms and concepts, categorize various disambiguation approaches enabled by LLMs, and provide a comparative analysis of their advantages and disadvantages. We also explore publicly available datasets for benchmarking ambiguity detection and resolution techniques and highlight their relevance for ongoing research. Finally, we identify open problems and future research directions, proposing areas for further investigation. By offering a comprehensive review of current research on ambiguities and disambiguation with LLMs, we aim to contribute to the development of more robust and reliable language systems.