Sid
Abstract:Recent advancements in Large Multimodal Models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. Addressing these issues, we introduce a novel dataset format, PIN (Paired and INterleaved multimodal documents), designed to significantly improve both the depth and breadth of multimodal training. The PIN format is built on three foundational principles: knowledge intensity, scalability, and support for diverse training modalities. This innovative format combines markdown files and comprehensive images to enrich training data with a dense knowledge structure and versatile training strategies. We present PIN-14M, an open-source dataset comprising 14 million samples derived from a diverse range of Chinese and English sources, tailored to include complex web and scientific content. This dataset is constructed meticulously to ensure data quality and ethical integrity, aiming to facilitate advanced training strategies and improve model robustness against common multimodal training pitfalls. Our initial results, forming the basis of this technical report, suggest significant potential for the PIN format in refining LMM performance, with plans for future expansions and detailed evaluations of its impact on model capabilities.
Abstract:Generative AI has demonstrated unprecedented creativity in the field of computer vision, yet such phenomena have not been observed in natural language processing. In particular, large language models (LLMs) can hardly produce written works at the level of human experts due to the extremely high complexity of literature writing. In this paper, we present HoLLMwood, an automated framework for unleashing the creativity of LLMs and exploring their potential in screenwriting, which is a highly demanding task. Mimicking the human creative process, we assign LLMs to different roles involved in the real-world scenario. In addition to the common practice of treating LLMs as ${Writer}$, we also apply LLMs as ${Editor}$, who is responsible for providing feedback and revision advice to ${Writer}$. Besides, to enrich the characters and deepen the plots, we introduce a role-playing mechanism and adopt LLMs as ${Actors}$ that can communicate and interact with each other. Evaluations on automatically generated screenplays show that HoLLMwood substantially outperforms strong baselines in terms of coherence, relevance, interestingness and overall quality.
Abstract:We introduce a new benchmark, ChartMimic, aimed at assessing the visually-grounded code generation capabilities of large multimodal models (LMMs). ChartMimic utilizes information-intensive visual charts and textual instructions as inputs, requiring LMMs to generate the corresponding code for chart rendering. ChartMimic includes 1,000 human-curated (figure, instruction, code) triplets, which represent the authentic chart use cases found in scientific papers across various domains(e.g., Physics, Computer Science, Economics, etc). These charts span 18 regular types and 4 advanced types, diversifying into 191 subcategories. Furthermore, we propose multi-level evaluation metrics to provide an automatic and thorough assessment of the output code and the rendered charts. Unlike existing code generation benchmarks, ChartMimic places emphasis on evaluating LMMs' capacity to harmonize a blend of cognitive capabilities, encompassing visual understanding, code generation, and cross-modal reasoning. The evaluation of 3 proprietary models and 11 open-weight models highlights the substantial challenges posed by ChartMimic. Even the advanced GPT-4V, Claude-3-opus only achieve an average score of 73.2 and 53.7, respectively, indicating significant room for improvement. We anticipate that ChartMimic will inspire the development of LMMs, advancing the pursuit of artificial general intelligence.
Abstract:Recently, vision model pre-training has evolved from relying on manually annotated datasets to leveraging large-scale, web-crawled image-text data. Despite these advances, there is no pre-training method that effectively exploits the interleaved image-text data, which is very prevalent on the Internet. Inspired by the recent success of compression learning in natural language processing, we propose a novel vision model pre-training method called Latent Compression Learning (LCL) for interleaved image-text data. This method performs latent compression learning by maximizing the mutual information between the inputs and outputs of a causal attention model. The training objective can be decomposed into two basic tasks: 1) contrastive learning between visual representation and preceding context, and 2) generating subsequent text based on visual representation. Our experiments demonstrate that our method not only matches the performance of CLIP on paired pre-training datasets (e.g., LAION), but can also leverage interleaved pre-training data (e.g., MMC4) to learn robust visual representation from scratch, showcasing the potential of vision model pre-training with interleaved image-text data. Code is released at https://github.com/OpenGVLab/LCL.
Abstract:In response to the challenges posed by the extensive parameter updates required for full fine-tuning of large-scale pre-trained models, parameter-efficient fine-tuning (PEFT) methods, exemplified by Low-Rank Adaptation (LoRA), have emerged. LoRA simplifies the fine-tuning process but may still struggle with a certain level of redundancy in low-rank matrices and limited effectiveness from merely increasing their rank. To address these issues, a natural idea is to enhance the independence and diversity of the learning process for the low-rank matrices. Therefore, we propose Masked LoRA Experts (MLAE), an innovative approach that applies the concept of masking to PEFT. Our method incorporates a cellular decomposition strategy that transforms a low-rank matrix into independent rank-1 submatrices, or ``experts'', thus enhancing independence. Additionally, we introduce a binary mask matrix that selectively activates these experts during training to promote more diverse and anisotropic learning, based on expert-level dropout strategies. Our investigations reveal that this selective activation not only enhances performance but also fosters a more diverse acquisition of knowledge with a marked decrease in parameter similarity among MLAE, significantly boosting the quality of the model while barely increasing the parameter count. Remarkably, MLAE achieves new SOTA performance with an average accuracy score of 78.8% on the VTAB-1k benchmark and 90.9% on the FGVC benchmark, demonstrating superior performance. Our code is available at https://github.com/jie040109/MLAE.
Abstract:Open-Vocabulary Detection (OVD) aims to detect objects from novel categories beyond the base categories on which the detector is trained. However, existing open-vocabulary detectors trained on known category data tend to assign higher confidence to trained categories and confuse novel categories with background. To resolve this, we propose OV-DQUO, an \textbf{O}pen-\textbf{V}ocabulary DETR with \textbf{D}enoising text \textbf{Q}uery training and open-world \textbf{U}nknown \textbf{O}bjects supervision. Specifically, we introduce a wildcard matching method that enables the detector to learn from pairs of unknown objects recognized by the open-world detector and text embeddings with general semantics, mitigating the confidence bias between base and novel categories. Additionally, we propose a denoising text query training strategy that synthesizes additional noisy query-box pairs from open-world unknown objects to trains the detector through contrastive learning, enhancing its ability to distinguish novel objects from the background. We conducted extensive experiments on the challenging OV-COCO and OV-LVIS benchmarks, achieving new state-of-the-art results of 45.6 AP50 and 39.3 mAP on novel categories respectively, without the need for additional training data. Models and code are released at https://github.com/xiaomoguhz/OV-DQUO
Abstract:Visual entailment (VE) is a multimodal reasoning task consisting of image-sentence pairs whereby a promise is defined by an image, and a hypothesis is described by a sentence. The goal is to predict whether the image semantically entails the sentence. VE systems have been widely adopted in many downstream tasks. Metamorphic testing is the commonest technique for AI algorithms, but it poses a significant challenge for VE testing. They either only consider perturbations on single modality which would result in ineffective tests due to the destruction of the relationship of image-text pair, or just conduct shallow perturbations on the inputs which can hardly detect the decision error made by VE systems. Motivated by the fact that objects in the image are the fundamental element for reasoning, we propose VEglue, an object-aligned joint erasing approach for VE systems testing. It first aligns the object regions in the premise and object descriptions in the hypothesis to identify linked and un-linked objects. Then, based on the alignment information, three Metamorphic Relations are designed to jointly erase the objects of the two modalities. We evaluate VEglue on four widely-used VE systems involving two public datasets. Results show that VEglue could detect 11,609 issues on average, which is 194%-2,846% more than the baselines. In addition, VEglue could reach 52.5% Issue Finding Rate (IFR) on average, and significantly outperform the baselines by 17.1%-38.2%. Furthermore, we leverage the tests generated by VEglue to retrain the VE systems, which largely improves model performance (50.8% increase in accuracy) on newly generated tests without sacrificing the accuracy on the original test set.
Abstract:Due to the advantages of fusing information from various modalities, multimodal learning is gaining increasing attention. Being a fundamental task of multimodal learning, Visual Grounding (VG), aims to locate objects in images through natural language expressions. Ensuring the quality of VG models presents significant challenges due to the complex nature of the task. In the black box scenario, existing adversarial testing techniques often fail to fully exploit the potential of both modalities of information. They typically apply perturbations based solely on either the image or text information, disregarding the crucial correlation between the two modalities, which would lead to failures in test oracles or an inability to effectively challenge VG models. To this end, we propose PEELING, a text perturbation approach via image-aware property reduction for adversarial testing of the VG model. The core idea is to reduce the property-related information in the original expression meanwhile ensuring the reduced expression can still uniquely describe the original object in the image. To achieve this, PEELING first conducts the object and properties extraction and recombination to generate candidate property reduction expressions. It then selects the satisfied expressions that accurately describe the original object while ensuring no other objects in the image fulfill the expression, through querying the image with a visual understanding technique. We evaluate PEELING on the state-of-the-art VG model, i.e. OFA-VG, involving three commonly used datasets. Results show that the adversarial tests generated by PEELING achieves 21.4% in MultiModal Impact score (MMI), and outperforms state-of-the-art baselines for images and texts by 8.2%--15.1%.
Abstract:Structured data sources, such as tables, graphs, and databases, are ubiquitous knowledge sources. Despite the demonstrated capabilities of large language models (LLMs) on plain text, their proficiency in interpreting and utilizing structured data remains limited. Our investigation reveals a notable deficiency in LLMs' ability to process structured data, e.g., ChatGPT lags behind state-of-the-art (SoTA) model by an average of 35%. To augment the Structured Knowledge Grounding (SKG) capabilities in LLMs, we have developed a comprehensive instruction tuning dataset comprising 1.1 million examples. Utilizing this dataset, we train a series of models, referred to as StructLM, based on the Code-LLaMA architecture, ranging from 7B to 34B parameters. Our StructLM series surpasses task-specific models on 14 out of 18 evaluated datasets and establishes new SoTA achievements on 7 SKG tasks. Furthermore, StructLM demonstrates exceptional generalization across 6 novel SKG tasks. Contrary to expectations, we observe that scaling model size offers marginal benefits, with StructLM-34B showing only slight improvements over StructLM-7B. This suggests that structured knowledge grounding is still a challenging task and requires more innovative design to push to a new level.
Abstract:Autonomous Driving System (ADS) testing is crucial in ADS development, with the current primary focus being on safety. However, the evaluation of non-safety-critical performance, particularly the ADS's ability to make optimal decisions and produce optimal paths for autonomous vehicles (AVs), is equally vital to ensure the intelligence and reduce risks of AVs. Currently, there is little work dedicated to assessing ADSs' optimal decision-making performance due to the lack of corresponding oracles and the difficulty in generating scenarios with non-optimal decisions. In this paper, we focus on evaluating the decision-making quality of an ADS and propose the first method for detecting non-optimal decision scenarios (NoDSs), where the ADS does not compute optimal paths for AVs. Firstly, to deal with the oracle problem, we propose a novel metamorphic relation (MR) aimed at exposing violations of optimal decisions. The MR identifies the property that the ADS should retain optimal decisions when the optimal path remains unaffected by non-invasive changes. Subsequently, we develop a new framework, Decictor, designed to generate NoDSs efficiently. Decictor comprises three main components: Non-invasive Mutation, MR Check, and Feedback. The Non-invasive Mutation ensures that the original optimal path in the mutated scenarios is not affected, while the MR Check is responsible for determining whether non-optimal decisions are made. To enhance the effectiveness of identifying NoDSs, we design a feedback metric that combines both spatial and temporal aspects of the AV's movement. We evaluate Decictor on Baidu Apollo, an open-source and production-grade ADS. The experimental results validate the effectiveness of Decictor in detecting non-optimal decisions of ADSs. Our work provides valuable and original insights into evaluating the non-safety-critical performance of ADSs.