College of Computer Science and Technology, Civil Aviation University of China, China
Abstract:Large Audio-Language Models (LALMs) have significantly advanced intelligent human-computer interaction, yet their reliance on text-based outputs limits their ability to generate natural speech responses directly, hindering seamless audio interactions. To address this, we introduce Step-Audio-AQAA, a fully end-to-end LALM designed for Audio Query-Audio Answer (AQAA) tasks. The model integrates a dual-codebook audio tokenizer for linguistic and semantic feature extraction, a 130-billion-parameter backbone LLM and a neural vocoder for high-fidelity speech synthesis. Our post-training approach employs interleaved token-output of text and audio to enhance semantic coherence and combines Direct Preference Optimization (DPO) with model merge to improve performance. Evaluations on the StepEval-Audio-360 benchmark demonstrate that Step-Audio-AQAA excels especially in speech control, outperforming the state-of-art LALMs in key areas. This work contributes a promising solution for end-to-end LALMs and highlights the critical role of token-based vocoder in enhancing overall performance for AQAA tasks.
Abstract:Fine-grained crop type classification serves as the fundamental basis for large-scale crop mapping and plays a vital role in ensuring food security. It requires simultaneous capture of both phenological dynamics (obtained from multi-temporal satellite data like Sentinel-2) and subtle spectral variations (demanding nanometer-scale spectral resolution from hyperspectral imagery). Research combining these two modalities remains scarce currently due to challenges in hyperspectral data acquisition and crop types annotation costs. To address these issues, we construct a hierarchical hyperspectral crop dataset (H2Crop) by integrating 30m-resolution EnMAP hyperspectral data with Sentinel-2 time series. With over one million annotated field parcels organized in a four-tier crop taxonomy, H2Crop establishes a vital benchmark for fine-grained agricultural crop classification and hyperspectral image processing. We propose a dual-stream Transformer architecture that synergistically processes these modalities. It coordinates two specialized pathways: a spectral-spatial Transformer extracts fine-grained signatures from hyperspectral EnMAP data, while a temporal Swin Transformer extracts crop growth patterns from Sentinel-2 time series. The designed hierarchical classification head with hierarchical fusion then simultaneously delivers multi-level crop type classification across all taxonomic tiers. Experiments demonstrate that adding hyperspectral EnMAP data to Sentinel-2 time series yields a 4.2% average F1-scores improvement (peaking at 6.3%). Extensive comparisons also confirm our method's higher accuracy over existing deep learning approaches for crop type classification and the consistent benefits of hyperspectral data across varying temporal windows and crop change scenarios. Codes and dataset are available at https://github.com/flyakon/H2Crop.
Abstract:Fine-grained crop classification is crucial for precision agriculture and food security monitoring. It requires simultaneous capture of both phenological dynamics (obtained from multi-temporal satellite data like Sentinel-2) and subtle spectral variations (demanding nanometer-scale spectral resolution from hyperspectral imagery). Research combining these two modalities remains scarce currently due to challenges in hyperspectral data acquisition and crop types annotation costs. To address these issues, we construct a hierarchical hyperspectral crop dataset (H2Crop) by integrating 30m-resolution EnMAP hyperspectral data with Sentinel-2 time series. With over one million annotated field parcels organized in a four-tier crop taxonomy, H2Crop establishes a vital benchmark for fine-grained agricultural crop classification and hyperspectral image processing. We propose a dual-stream Transformer architecture that synergistically processes these modalities. It coordinates two specialized pathways: a spectral-spatial Transformer extracts fine-grained signatures from hyperspectral EnMAP data, while a temporal Swin Transformer extracts crop growth patterns from Sentinel-2 time series. The designed hierarchy classification heads with hierarchical fusion then simultaneously delivers multi-level classification across all taxonomic tiers. Experiments demonstrate that adding hyperspectral EnMAP data to Sentinel-2 time series yields a 4.2% average F1-scores improvement (peaking at 6.3%). Extensive comparisons also confirming our method's higher accuracy over existing deep learning approaches for crop type classification and the consistent benefits of hyperspectral data across varying temporal windows and crop change scenarios. Codes and dataset will be available at https://github.com/flyakon/H2Crop and www.glass.hku.hk Keywords: Crop type classification, precision agriculture, remote sensing, deep learning, hyperspectral data, Sentinel-2 time series, fine-grained crops
Abstract:Accurate radar cross section (RCS) modeling is crucial for characterizing target scattering and improving the precision of Integrated Sensing and Communication (ISAC) channel modeling. Existing RCS models are typically designed for specific target types, leading to increased complexity and lack of generalization. This makes it difficult to standardize RCS models for 3GPP ISAC channels, which need to account for multiple typical target types simultaneously. Furthermore, 3GPP models must support both system-level and link-level simulations, requiring the integration of large-scale and small-scale scattering characteristics. To address these challenges, this paper proposes a unified RCS modeling framework that consolidates these two aspects. The model decomposes RCS into three components: (1) a large-scale power factor representing overall scattering strength, (2) a small-scale angular-dependent component describing directional scattering, and (3) a random component accounting for variations across target instances. We validate the model through mono-static RCS measurements for UAV, human, and vehicle targets across five frequency bands. The results demonstrate that the proposed model can effectively capture RCS variations for different target types. Finally, the model is incorporated into an ISAC channel simulation platform to assess the impact of target RCS characteristics on path loss, delay spread, and angular spread, providing valuable insights for future ISAC system design.
Abstract:Reconfigurable Intelligent Surface (RIS) technologies have been considered as a promising enabler for 6G, enabling advantageous control of electromagnetic (EM) propagation. RIS can be categorized into multiple types based on their reflective/transmissive modes and polarization control capabilities, all of which are expected to be widely deployed in practical environments. A reliable RIS channel model is essential for the design and development of RIS communication systems. While deterministic modeling approaches such as ray-tracing (RT) offer significant benefits, a unified model that accommodates all RIS types is still lacking. This paper addresses this gap by developing a high-precision deterministic channel model based on RT, supporting multiple RIS types: reflective, transmissive, hybrid, and three polarization operation modes. To achieve this, a unified EM response model for the aforementioned RIS types is developed. The reflection and transmission coefficients of RIS elements are derived using a tensor-based equivalent impedance approach, followed by calculating the scattered fields of the RIS to establish an EM response model. The performance of different RIS types is compared through simulations in typical scenarios. During this process, passive and lossless constraints on the reflection and transmission coefficients are incorporated to ensure fairness in the performance evaluation. Simulation results validate the framework's accuracy in characterizing the RIS channel, and specific cases tailored for dual-polarization independent control and polarization rotating RISs are highlighted as insights for their future deployment. This work can be helpful for the evaluation and optimization of RIS-enabled wireless communication systems.
Abstract:This paper introduces EmbodiedAgent, a hierarchical framework for heterogeneous multi-robot control. EmbodiedAgent addresses critical limitations of hallucination in impractical tasks. Our approach integrates a next-action prediction paradigm with a structured memory system to decompose tasks into executable robot skills while dynamically validating actions against environmental constraints. We present MultiPlan+, a dataset of more than 18,000 annotated planning instances spanning 100 scenarios, including a subset of impractical cases to mitigate hallucination. To evaluate performance, we propose the Robot Planning Assessment Schema (RPAS), combining automated metrics with LLM-aided expert grading. Experiments demonstrate EmbodiedAgent's superiority over state-of-the-art models, achieving 71.85% RPAS score. Real-world validation in an office service task highlights its ability to coordinate heterogeneous robots for long-horizon objectives.
Abstract:Integrated Sensing and Communication (ISAC) is considered a key technology in 6G networks. An accurate sensing channel model is crucial for the design and sensing performance evaluation of ISAC systems. The widely used Geometry-Based Stochastic Model (GBSM), typically applied in standardized channel modeling, mainly focuses on the statistical fading characteristics of the channel. However, it fails to capture the characteristics of targets in ISAC systems, such as their positions and velocities, as well as the impact of the targets on the background. To address this issue, this paper proposes an extended GBSM (E-GBSM) sensing channel model that incorporates newly discovered channel characteristics into a unified modeling framework. In this framework, the sensing channel is divided into target and background channels. For the target channel, the model introduces a concatenated modeling approach, while for the background channel, a parameter called the power control factor is introduced to assess impact of the target on the background channel, making the modeling framework applicable to both mono-static and bi-static sensing modes. To validate the proposed model's effectiveness, measurements of target and background channels are conducted in both indoor and outdoor scenarios, covering various sensing targets such as metal plates, reconfigurable intelligent surfaces, human bodies, UAVs, and vehicles. The experimental results provide important theoretical support and empirical data for the standardization of ISAC channel modeling.
Abstract:Integrated Sensing and Communication (ISAC), as a fundamental technology of 6G, empowers Vehicle-to-Everything (V2X) systems with enhanced sensing capabilities. One of its promising applications is the reliance on constructed maps for vehicle positioning. Traditional positioning methods primarily rely on Line-of-Sight (LOS), but in urban vehicular scenarios, obstructions often result in predominantly Non-Line-of-Sight (NLOS) conditions. Existing research indicates that NLOS paths, characterized by one-bounce reflection on building walls with determined delay and angle, can support sensing and positioning. However, experimental validation remains insufficient. To address this gap, channel measurements are conducted in an urban street to explore the existence of strong reflected paths in the presence of a vehicle target. The results show significant power contribution from NLOS paths, with large Environmental Objects (EOs) playing a key role in shaping NLOS propagation. Then, a novel model for EO reflection is proposed to extend the Geometry-Based Stochastic Model (GBSM) for ISAC channel standardization. Simulation results validate the model's ability to capture EO's power and position characteristics, showing that higher EO-reflected power and closer distance to Rx reduce Delay Spread (DS), which is more favorable for positioning. This model provides theoretical guidance and empirical support for ISAC positioning algorithms and system design in vehicular scenarios.
Abstract:Traditional agentic workflows rely on external prompts to manage interactions with tools and the environment, which limits the autonomy of reasoning models. We position \emph{Large Agent Models (LAMs)} that internalize the generation of \emph{Chain-of-Action (CoA)}, enabling the model to autonomously decide when and how to use external tools. Our proposed AutoCoA framework combines supervised fine-tuning (SFT) and reinforcement learning (RL), allowing the model to seamlessly switch between reasoning and action while efficiently managing environment interactions. Main components include step-level action triggering, trajectory-level CoA optimization, and an internal world model to reduce real-environment interaction costs. Evaluations on open-domain QA tasks demonstrate that AutoCoA-trained agent models significantly outperform ReAct-based workflows in task completion, especially in tasks that require long-term reasoning and multi-step actions. Code and dataset are available at https://github.com/ADaM-BJTU/AutoCoA
Abstract:Instance-level change detection in 3D scenes presents significant challenges, particularly in uncontrolled environments lacking labeled image pairs, consistent camera poses, or uniform lighting conditions. This paper addresses these challenges by introducing a novel approach for detecting changes in real-world scenarios. Our method leverages 4D Gaussians to embed multiple images into Gaussian distributions, enabling the rendering of two coherent image sequences. We segment each image and assign unique identifiers to instances, facilitating efficient change detection through ID comparison. Additionally, we utilize change maps and classification encodings to categorize 4D Gaussians as changed or unchanged, allowing for the rendering of comprehensive change maps from any viewpoint. Extensive experiments across various instance-level change detection datasets demonstrate that our method significantly outperforms state-of-the-art approaches like C-NERF and CYWS-3D, especially in scenarios with substantial lighting variations. Our approach offers improved detection accuracy, robustness to lighting changes, and efficient processing times, advancing the field of 3D change detection.