Cardiff University
Abstract:Background: Motivational interviewing (MI) is an effective counseling approach for promoting health behavior change, but its impact is constrained by the need for highly trained human counselors. Objective: This study aimed to explore a scalable alternative by developing and evaluating Large Language Models for Motivational Interviewing (MI-LLMs). Methods: We first curated five Chinese psychological counseling corpora and, using GPT-4 with an MI-informed prompt, transcribed multi-turn dialogues from the two highest-quality datasets (CPsyCounD and PsyDTCorpus) into 2,040 MI-style counseling conversations, of which 2,000 were used for training and 40 for testing. Three Chinese-capable open-source LLMs (Baichuan2-7B-Chat, ChatGLM-4-9B-Chat and Llama-3-8B-Chinese-Chat-v2) were fine-tuned on this corpus and were named as MI-LLMs. We evaluated MI-LLMs using round-based automatic metrics and expert manual coding with the Motivational Interviewing Treatment Integrity (MITI) Coding Manual 4.2.1. Results: Across all three models, fine-tuning substantially improved BLEU-4 and ROUGE scores compared with the base models, and manual coding showed that MI-LLMs achieved technical and relational global scores, and MI-adherent ratios that approached those of real MI dialogues, although complex reflections and reflection-to-question ratios remained less frequent. Conclusions: These findings provide initial evidence that MI-oriented fine-tuning can endow general-purpose LLMs with core MI-consistent counseling behaviors, suggesting a scalable pathway toward AI-assisted health behavior change support while underscoring the need for further work on data scale, complex MI skills and real-world intervention trials.
Abstract:Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting.
Abstract:Survey papers play a critical role in scientific communication by consolidating progress across a field. Recent advances in Large Language Models (LLMs) offer a promising solution by automating key steps in the survey-generation pipeline, such as retrieval, structuring, and summarization. However, existing LLM-based approaches often struggle with maintaining coherence across long, multi-section surveys and providing comprehensive citation coverage. To address these limitations, we introduce SurveyGen-I, an automatic survey generation framework that combines coarse-to-fine retrieval, adaptive planning, and memory-guided generation. SurveyGen-I first performs survey-level retrieval to construct the initial outline and writing plan, and then dynamically refines both during generation through a memory mechanism that stores previously written content and terminology, ensuring coherence across subsections. When the system detects insufficient context, it triggers fine-grained subsection-level retrieval. During generation, SurveyGen-I leverages this memory mechanism to maintain coherence across subsections. Experiments across four scientific domains demonstrate that SurveyGen-I consistently outperforms previous works in content quality, consistency, and citation coverage.




Abstract:We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.




Abstract:Recent works of music representation learning mainly focus on learning acoustic music representations with unlabeled audios or further attempt to acquire multi-modal music representations with scarce annotated audio-text pairs. They either ignore the language semantics or rely on labeled audio datasets that are difficult and expensive to create. Moreover, merely modeling semantic space usually fails to achieve satisfactory performance on music recommendation tasks since the user preference space is ignored. In this paper, we propose a novel Hierarchical Two-stage Contrastive Learning (HTCL) method that models similarity from the semantic perspective to the user perspective hierarchically to learn a comprehensive music representation bridging the gap between semantic and user preference spaces. We devise a scalable audio encoder and leverage a pre-trained BERT model as the text encoder to learn audio-text semantics via large-scale contrastive pre-training. Further, we explore a simple yet effective way to exploit interaction data from our online music platform to adapt the semantic space to user preference space via contrastive fine-tuning, which differs from previous works that follow the idea of collaborative filtering. As a result, we obtain a powerful audio encoder that not only distills language semantics from the text encoder but also models similarity in user preference space with the integrity of semantic space preserved. Experimental results on both music semantic and recommendation tasks confirm the effectiveness of our method.




Abstract:Accurate indoor positioning for unmanned aerial vehicles (UAVs) is critical for logistics, surveillance, and emergency response applications, particularly in GPS-denied environments. Existing indoor localization methods, including optical tracking, ultra-wideband, and Bluetooth-based systems, face cost, accuracy, and robustness trade-offs, limiting their practicality for UAV navigation. This paper proposes CiUAV, a novel 3D indoor localization system designed for UAVs, leveraging channel state information (CSI) obtained from low-cost ESP32 IoT-based sensors. The system incorporates a dynamic automatic gain control (AGC) compensation algorithm to mitigate noise and stabilize CSI signals, significantly enhancing the robustness of the measurement. Additionally, a multi-task 3D localization model, Sensor-in-Sample (SiS), is introduced to enhance system robustness by addressing challenges related to incomplete sensor data and limited training samples. SiS achieves this by joint training with varying sensor configurations and sample sizes, ensuring reliable performance even in resource-constrained scenarios. Experiment results demonstrate that CiUAV achieves a LMSE localization error of 0.2629 m in a 3D space, achieving good accuracy and robustness. The proposed system provides a cost-effective and scalable solution, demonstrating its usefulness for UAV applications in resource-constrained indoor environments.
Abstract:We propose a robust method for monocular depth scale recovery. Monocular depth estimation can be divided into two main directions: (1) relative depth estimation, which provides normalized or inverse depth without scale information, and (2) metric depth estimation, which involves recovering depth with absolute scale. To obtain absolute scale information for practical downstream tasks, utilizing textual information to recover the scale of a relative depth map is a highly promising approach. However, since a single image can have multiple descriptions from different perspectives or with varying styles, it has been shown that different textual descriptions can significantly affect the scale recovery process. To address this issue, our method, VGLD, stabilizes the influence of textual information by incorporating high-level semantic information from the corresponding image alongside the textual description. This approach resolves textual ambiguities and robustly outputs a set of linear transformation parameters (scalars) that can be globally applied to the relative depth map, ultimately generating depth predictions with metric-scale accuracy. We validate our method across several popular relative depth models(MiDas, DepthAnything), using both indoor scenes (NYUv2) and outdoor scenes (KITTI). Our results demonstrate that VGLD functions as a universal alignment module when trained on multiple datasets, achieving strong performance even in zero-shot scenarios. Code is available at: https://github.com/pakinwu/VGLD.
Abstract:We propose a robust method for monocular depth scale recovery. Monocular depth estimation can be divided into two main directions: (1) relative depth estimation, which provides normalized or inverse depth without scale information, and (2) metric depth estimation, which involves recovering depth with absolute scale. To obtain absolute scale information for practical downstream tasks, utilizing textual information to recover the scale of a relative depth map is a highly promising approach. However, since a single image can have multiple descriptions from different perspectives or with varying styles, it has been shown that different textual descriptions can significantly affect the scale recovery process. To address this issue, our method, VGLD, stabilizes the influence of textual information by incorporating high-level semantic information from the corresponding image alongside the textual description. This approach resolves textual ambiguities and robustly outputs a set of linear transformation parameters (scalars) that can be globally applied to the relative depth map, ultimately generating depth predictions with metric-scale accuracy. We validate our method across several popular relative depth models(MiDas, DepthAnything), using both indoor scenes (NYUv2) and outdoor scenes (KITTI). Our results demonstrate that VGLD functions as a universal alignment module when trained on multiple datasets, achieving strong performance even in zero-shot scenarios. Code is available at: https://github.com/pakinwu/VGLD.
Abstract:The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.




Abstract:Large language models (LLMs) hold great promise for assisting clinical interviews due to their fluent interactive capabilities and extensive medical knowledge. However, the lack of high-quality interview dialogue data and widely accepted evaluation methods has significantly impeded this process. So we propose CliniChat, a framework that integrates multi-source knowledge to enable LLMs to simulate real-world clinical interviews. It consists of two modules: Clini-Recon and Clini-Eval, each responsible for reconstructing and evaluating interview dialogues, respectively. By incorporating three sources of knowledge, Clini-Recon transforms clinical notes into systematic, professional, and empathetic interview dialogues. Clini-Eval combines a comprehensive evaluation metric system with a two-phase automatic evaluation approach, enabling LLMs to assess interview performance like experts. We contribute MedQA-Dialog, a high-quality synthetic interview dialogue dataset, and CliniChatGLM, a model specialized for clinical interviews. Experimental results demonstrate that CliniChatGLM's interview capabilities undergo a comprehensive upgrade, particularly in history-taking, achieving state-of-the-art performance.