Abstract:Continual learning aims to acquire tasks sequentially without catastrophic forgetting, yet standard strategies face a core tradeoff: regularization-based methods (e.g., EWC) can overconstrain updates when task optima are weakly overlapping, while replay-based methods can retain performance but drift due to imperfect replay. We study a hybrid perspective: \emph{trust region continual learning} that combines generative replay with a Fisher-metric trust region constraint. We show that, under local approximations, the resulting update admits a MAML-style interpretation with a single implicit inner step: replay supplies an old-task gradient signal (query-like), while the Fisher-weighted penalty provides an efficient offline curvature shaping (support-like). This yields an emergent meta-learning property in continual learning: the model becomes an initialization that rapidly \emph{re-converges} to prior task optima after each task transition, without explicitly optimizing a bilevel objective. Empirically, on task-incremental diffusion image generation and continual diffusion-policy control, trust region continual learning achieves the best final performance and retention, and consistently recovers early-task performance faster than EWC, replay, and continual meta-learning baselines.
Abstract:We investigate the functional role of emergent outliers in large language models, specifically attention sinks (a few tokens that consistently receive large attention logits) and residual sinks (a few fixed dimensions with persistently large activations across most tokens). We hypothesize that these outliers, in conjunction with the corresponding normalizations (\textit{e.g.}, softmax attention and RMSNorm), effectively rescale other non-outlier components. We term this phenomenon \textit{outlier-driven rescaling} and validate this hypothesis across different model architectures and training token counts. This view unifies the origin and mitigation of both sink types. Our main conclusions and observations include: (1) Outliers function jointly with normalization: removing normalization eliminates the corresponding outliers but degrades training stability and performance; directly clipping outliers while retaining normalization leads to degradation, indicating that outlier-driven rescaling contributes to training stability. (2) Outliers serve more as rescale factors rather than contributors, as the final contributions of attention and residual sinks are significantly smaller than those of non-outliers. (3) Outliers can be absorbed into learnable parameters or mitigated via explicit gated rescaling, leading to improved training performance (average gain of 2 points) and enhanced quantization robustness (1.2 points degradation under W4A4 quantization).
Abstract:Do vision--language models (VLMs) develop more human-like sensitivity to linguistic concreteness than text-only large language models (LLMs) when both are evaluated with text-only prompts? We study this question with a controlled comparison between matched Llama text backbones and their Llama Vision counterparts across multiple model scales, treating multimodal pretraining as an ablation on perceptual grounding rather than access to images at inference. We measure concreteness effects at three complementary levels: (i) output behavior, by relating question-level concreteness to QA accuracy; (ii) embedding geometry, by testing whether representations organize along a concreteness axis; and (iii) attention dynamics, by quantifying context reliance via attention-entropy measures. In addition, we elicit token-level concreteness ratings from models and evaluate alignment to human norm distributions, testing whether multimodal training yields more human-consistent judgments. Across benchmarks and scales, VLMs show larger gains on more concrete inputs, exhibit clearer concreteness-structured representations, produce ratings that better match human norms, and display systematically different attention patterns consistent with increased grounding.
Abstract:Long Chain-of-Thought (LCoT), achieved by Reinforcement Learning with Verifiable Rewards (RLVR), has proven effective in enhancing the reasoning capabilities of Large Language Models (LLMs). However, reasoning in current LLMs is primarily generated as plain text, where performing semantic evaluation on such unstructured data creates a computational bottleneck during training. Despite RLVR-based optimization, existing methods still suffer from coarse-grained supervision, reward hacking, high training costs, and poor generalization. To address these issues, we propose the Graph Reasoning Paradigm (GRP), which realizes structured and symbolic reasoning, implemented via graph-structured representations with step-level cognitive labels. Building upon GRP, we further design Process-Aware Stratified Clipping Group Relative Policy Optimization (PASC-GRPO), which leverages structured evaluation to replace semantic evaluation, achieves process-aware verification through graph-structured outcome rewards, and mitigates reward hacking via stratified clipping advantage estimation. Experiments demonstrate significant improvements across mathematical reasoning and code generation tasks. Data, models, and code will be released later.
Abstract:Memory serves as the pivotal nexus bridging past and future, providing both humans and AI systems with invaluable concepts and experience to navigate complex tasks. Recent research on autonomous agents has increasingly focused on designing efficient memory workflows by drawing on cognitive neuroscience. However, constrained by interdisciplinary barriers, existing works struggle to assimilate the essence of human memory mechanisms. To bridge this gap, we systematically synthesizes interdisciplinary knowledge of memory, connecting insights from cognitive neuroscience with LLM-driven agents. Specifically, we first elucidate the definition and function of memory along a progressive trajectory from cognitive neuroscience through LLMs to agents. We then provide a comparative analysis of memory taxonomy, storage mechanisms, and the complete management lifecycle from both biological and artificial perspectives. Subsequently, we review the mainstream benchmarks for evaluating agent memory. Additionally, we explore memory security from dual perspectives of attack and defense. Finally, we envision future research directions, with a focus on multimodal memory systems and skill acquisition.




Abstract:We present Kling-Omni, a generalist generative framework designed to synthesize high-fidelity videos directly from multimodal visual language inputs. Adopting an end-to-end perspective, Kling-Omni bridges the functional separation among diverse video generation, editing, and intelligent reasoning tasks, integrating them into a holistic system. Unlike disjointed pipeline approaches, Kling-Omni supports a diverse range of user inputs, including text instructions, reference images, and video contexts, processing them into a unified multimodal representation to deliver cinematic-quality and highly-intelligent video content creation. To support these capabilities, we constructed a comprehensive data system that serves as the foundation for multimodal video creation. The framework is further empowered by efficient large-scale pre-training strategies and infrastructure optimizations for inference. Comprehensive evaluations reveal that Kling-Omni demonstrates exceptional capabilities in in-context generation, reasoning-based editing, and multimodal instruction following. Moving beyond a content creation tool, we believe Kling-Omni is a pivotal advancement toward multimodal world simulators capable of perceiving, reasoning, generating and interacting with the dynamic and complex worlds.
Abstract:Mathematical thinking is a fundamental aspect of human cognition. Cognitive scientists have investigated the mechanisms that underlie our ability to thinking geometrically and numerically, to take two prominent examples, and developmental scientists have documented the trajectories of these abilities over the lifespan. Prior research has shown that computer vision (CV) models trained on the unrelated task of image classification nevertheless learn latent representations of geometric and numerical concepts similar to those of adults. Building on this demonstrated cognitive alignment, the current study investigates whether CV models also show developmental alignment: whether their performance improvements across training to match the developmental progressions observed in children. In a detailed case study of the ResNet-50 model, we show that this is the case. For the case of geometry and topology, we find developmental alignment for some classes of concepts (Euclidean Geometry, Geometrical Figures, Metric Properties, Topology) but not others (Chiral Figures, Geometric Transformations, Symmetrical Figures). For the case of number, we find developmental alignment in the emergence of a human-like ``mental number line'' representation with experience. These findings show the promise of computer vision models for understanding the development of mathematical understanding in humans. They point the way to future research exploring additional model architectures and building larger benchmarks.




Abstract:The advent of Multimodal Large Language Models (MLLMs) has expanded AI capabilities to visual modalities, yet existing evaluation benchmarks remain limited to single-video understanding, overlooking the critical need for multi-video understanding in real-world scenarios (e.g., sports analytics and autonomous driving). To address this significant gap, we introduce MVU-Eval, the first comprehensive benchmark for evaluating Multi-Video Understanding for MLLMs. Specifically, our MVU-Eval mainly assesses eight core competencies through 1,824 meticulously curated question-answer pairs spanning 4,959 videos from diverse domains, addressing both fundamental perception tasks and high-order reasoning tasks. These capabilities are rigorously aligned with real-world applications such as multi-sensor synthesis in autonomous systems and cross-angle sports analytics. Through extensive evaluation of state-of-the-art open-source and closed-source models, we reveal significant performance discrepancies and limitations in current MLLMs' ability to perform understanding across multiple videos. The benchmark will be made publicly available to foster future research.




Abstract:Recent advances in audio-driven avatar video generation have significantly enhanced audio-visual realism. However, existing methods treat instruction conditioning merely as low-level tracking driven by acoustic or visual cues, without modeling the communicative purpose conveyed by the instructions. This limitation compromises their narrative coherence and character expressiveness. To bridge this gap, we introduce Kling-Avatar, a novel cascaded framework that unifies multimodal instruction understanding with photorealistic portrait generation. Our approach adopts a two-stage pipeline. In the first stage, we design a multimodal large language model (MLLM) director that produces a blueprint video conditioned on diverse instruction signals, thereby governing high-level semantics such as character motion and emotions. In the second stage, guided by blueprint keyframes, we generate multiple sub-clips in parallel using a first-last frame strategy. This global-to-local framework preserves fine-grained details while faithfully encoding the high-level intent behind multimodal instructions. Our parallel architecture also enables fast and stable generation of long-duration videos, making it suitable for real-world applications such as digital human livestreaming and vlogging. To comprehensively evaluate our method, we construct a benchmark of 375 curated samples covering diverse instructions and challenging scenarios. Extensive experiments demonstrate that Kling-Avatar is capable of generating vivid, fluent, long-duration videos at up to 1080p and 48 fps, achieving superior performance in lip synchronization accuracy, emotion and dynamic expressiveness, instruction controllability, identity preservation, and cross-domain generalization. These results establish Kling-Avatar as a new benchmark for semantically grounded, high-fidelity audio-driven avatar synthesis.
Abstract:We introduce the concept of a \textbf{neuro-symbolic pair} -- neural and symbolic approaches that are linked through a common knowledge representation. Next, we present \textbf{taxonomic networks}, a type of discrimination network in which nodes represent hierarchically organized taxonomic concepts. Using this representation, we construct a novel neuro-symbolic pair and evaluate its performance. We show that our symbolic method learns taxonomic nets more efficiently with less data and compute, while the neural method finds higher-accuracy taxonomic nets when provided with greater resources. As a neuro-symbolic pair, these approaches can be used interchangeably based on situational needs, with seamless translation between them when necessary. This work lays the foundation for future systems that more fundamentally integrate neural and symbolic computation.