Abstract:While accurate and user-friendly Computer-Aided Design (CAD) is crucial for industrial design and manufacturing, existing methods still struggle to achieve this due to their over-simplified representations or architectures incapable of supporting multimodal design requirements. In this paper, we attempt to tackle this problem from both methods and datasets aspects. First, we propose a cascade MAR with topology predictor (CMT), the first multimodal framework for CAD generation based on Boundary Representation (B-Rep). Specifically, the cascade MAR can effectively capture the ``edge-counters-surface'' priors that are essential in B-Reps, while the topology predictor directly estimates topology in B-Reps from the compact tokens in MAR. Second, to facilitate large-scale training, we develop a large-scale multimodal CAD dataset, mmABC, which includes over 1.3 million B-Rep models with multimodal annotations, including point clouds, text descriptions, and multi-view images. Extensive experiments show the superior of CMT in both conditional and unconditional CAD generation tasks. For example, we improve Coverage and Valid ratio by +10.68% and +10.3%, respectively, compared to state-of-the-art methods on ABC in unconditional generation. CMT also improves +4.01 Chamfer on image conditioned CAD generation on mmABC. The dataset, code and pretrained network shall be released.
Abstract:Ad-hoc instruction fine-tuning of large language models (LLMs) is widely adopted for domain-specific adaptation. While domain-specific supervised fine-tuning (SFT) is effective and efficient, it often weakens cross-domain generalization and struggles with noisy training data. To address these challenges, we propose DONOD, a lightweight model-intrinsic data pruning method. Our approach evaluates data using two model-parameter-based metrics: Delta of Norm (DON), which captures the cumulative influence on model weights, and Norm of Delta (NOD), which quantifies weight instability. Moreover, by employing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, we effectively filter noisy, unlearnable, and generalization-harming samples without relying on auxiliary models during the SFT process. Experiments on mathematical tasks demonstrate that data selected by DONOD achieve superior fine-tuning efficiency and improved robustness against noisy data. By filtering out 70% of the full dataset, we improve target-domain accuracy by 14.90% and cross-domain accuracy by 5.67%. Meanwhile, our selected data present superior cross-architecture generalization. Data pruned by smaller models (e.g., Llama 3.1-8B) generalize effectively on larger models (e.g., Llama 2-13B). Compared to existing related methodologies, DONOD demonstrates comparable or superior performance while remaining dataset-agnostic, enabling broader applicability.
Abstract:Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined due to the lack of a dedicated benchmark. To address this gap, we introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery: inspiration retrieval, hypothesis composition, and hypothesis ranking. We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers across 12 disciplines, with expert validation confirming its accuracy. To prevent data contamination, we focus exclusively on papers published in 2024, ensuring minimal overlap with LLM pretraining data. Our evaluation reveals that LLMs perform well in retrieving inspirations, an out-of-distribution task, suggesting their ability to surface novel knowledge associations. This positions LLMs as "research hypothesis mines", capable of facilitating automated scientific discovery by generating innovative hypotheses at scale with minimal human intervention.
Abstract:Multimodal Large Language Models (MLLMs) are becoming increasingly popular, while the high computational cost associated with multimodal data input, particularly from visual tokens, poses a significant challenge. Existing training-based token compression methods improve inference efficiency but require costly retraining, while training-free methods struggle to maintain performance when aggressively reducing token counts. In this study, we reveal that the performance degradation of MLLM closely correlates with the accelerated loss of information in the attention output matrix. This insight introduces a novel information-preserving perspective, making it possible to maintain performance even under extreme token compression. Based on this finding, we propose TokenCarve, a training-free, plug-and-play, two-stage token compression framework. The first stage employs an Information-Preservation-Guided Selection (IPGS) strategy to prune low-information tokens, while the second stage further leverages IPGS to guide token merging, minimizing information loss. Extensive experiments on 11 datasets and 2 model variants demonstrate the effectiveness of TokenCarve. It can even reduce the number of visual tokens to 22.2% of the original count, achieving a 1.23x speedup in inference, a 64% reduction in KV cache storage, and only a 1.54% drop in accuracy. Our code is available at https://github.com/ShawnTan86/TokenCarve.
Abstract:Multi-Modal Large Language Models (MLLMs) stand out in various tasks but still struggle with hallucinations. While recent training-free mitigation methods mostly introduce additional inference overhead via retrospection strategy and contrastive decoding, we propose attention reallocation (AttnReal) to mitigate hallucinations with nearly zero extra cost. Our approach is motivated by the key observations that, MLLM's unreasonable attention distribution causes features to be dominated by historical output tokens, which further contributes to hallucinated responses because of the distribution gap between different token types. Based on the observations, AttnReal recycles excessive attention from output tokens and reallocates it to visual tokens, which reduces MLLM's reliance on language priors and ensures the decoding process depends more on the visual inputs. More interestingly, we find that, by controlling the intensity of AttnReal, we can achieve a wide-range trade-off between the response faithfulness and overall performance. Comprehensive results from different benchmarks validate the effectiveness of AttnReal across six open-source MLLMs and three decoding strategies.
Abstract:Large language models have already demonstrated their formidable capabilities in general domains, ushering in a revolutionary transformation. However, exploring and exploiting the extensive knowledge of these models to comprehend multi-omics biology remains underexplored. To fill this research gap, we first introduce Biology-Instructions, the first large-scale multi-omics biological sequences-related instruction-tuning dataset including DNA, RNA, proteins, and multi-molecules, designed to bridge the gap between large language models (LLMs) and complex biological sequences-related tasks. This dataset can enhance the versatility of LLMs by integrating diverse biological sequenced-based prediction tasks with advanced reasoning capabilities, while maintaining conversational fluency. Additionally, we reveal significant performance limitations in even state-of-the-art LLMs on biological sequence-related multi-omics tasks without specialized pre-training and instruction-tuning. We further develop a strong baseline called ChatMultiOmics with a novel three-stage training pipeline, demonstrating the powerful ability to understand biology by using Biology-Instructions. Biology-Instructions and ChatMultiOmics are publicly available and crucial resources for enabling more effective integration of LLMs with multi-omics sequence analysis.
Abstract:In this paper, we propose Text-based Open Molecule Generation Benchmark (TOMG-Bench), the first benchmark to evaluate the open-domain molecule generation capability of LLMs. TOMG-Bench encompasses a dataset of three major tasks: molecule editing (MolEdit), molecule optimization (MolOpt), and customized molecule generation (MolCustom). Each task further contains three subtasks, with each subtask comprising 5,000 test samples. Given the inherent complexity of open molecule generation, we have also developed an automated evaluation system that helps measure both the quality and the accuracy of the generated molecules. Our comprehensive benchmarking of 25 LLMs reveals the current limitations and potential areas for improvement in text-guided molecule discovery. Furthermore, with the assistance of OpenMolIns, a specialized instruction tuning dataset proposed for solving challenges raised by TOMG-Bench, Llama3.1-8B could outperform all the open-source general LLMs, even surpassing GPT-3.5-turbo by 46.5\% on TOMG-Bench. Our codes and datasets are available through https://github.com/phenixace/TOMG-Bench.
Abstract:Materials discovery and design aim to find components and structures with desirable properties over highly complex and diverse search spaces. Traditional solutions, such as high-throughput simulations and machine learning (ML), often rely on complex descriptors, which hinder generalizability and transferability across tasks. Moreover, these descriptors may deviate from experimental data due to inevitable defects and purity issues in the real world, which may reduce their effectiveness in practical applications. To address these challenges, we propose Darwin 1.5, an open-source large language model (LLM) tailored for materials science. By leveraging natural language as input, Darwin eliminates the need for task-specific descriptors and enables a flexible, unified approach to material property prediction and discovery. We employ a two-stage training strategy combining question-answering (QA) fine-tuning with multi-task learning (MTL) to inject domain-specific knowledge in various modalities and facilitate cross-task knowledge transfer. Through our strategic approach, we achieved a significant enhancement in the prediction accuracy of LLMs, with a maximum improvement of 60\% compared to LLaMA-7B base models. It further outperforms traditional machine learning models on various tasks in material science, showcasing the potential of LLMs to provide a more versatile and scalable foundation model for materials discovery and design.
Abstract:While deep learning has made remarkable progress in recent years, models continue to struggle with catastrophic forgetting when processing continuously incoming data. This issue is particularly critical in continual learning, where the balance between retaining prior knowledge and adapting to new information-known as the stability-plasticity dilemma-remains a significant challenge. In this paper, we propose SegACIL, a novel continual learning method for semantic segmentation based on a linear closed-form solution. Unlike traditional methods that require multiple epochs for training, SegACIL only requires a single epoch, significantly reducing computational costs. Furthermore, we provide a theoretical analysis demonstrating that SegACIL achieves performance on par with joint learning, effectively retaining knowledge from previous data which makes it to keep both stability and plasticity at the same time. Extensive experiments on the Pascal VOC2012 dataset show that SegACIL achieves superior performance in the sequential, disjoint, and overlap settings, offering a robust solution to the challenges of class-incremental semantic segmentation. Code is available at https://github.com/qwrawq/SegACIL.
Abstract:Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.