Large language models have become a potential pathway toward achieving artificial general intelligence. Recent works on multi-modal large language models have demonstrated their effectiveness in handling visual modalities. In this work, we extend the research of MLLMs to point clouds and present the LAMM-Dataset and LAMM-Benchmark for 2D image and 3D point cloud understanding. We also establish an extensible framework to facilitate the extension of MLLMs to additional modalities. Our main contribution is three-fold: 1) We present the LAMM-Dataset and LAMM-Benchmark, which cover almost all high-level vision tasks for 2D and 3D vision. Extensive experiments validate the effectiveness of our dataset and benchmark. 2) We demonstrate the detailed methods of constructing instruction-tuning datasets and benchmarks for MLLMs, which will enable future research on MLLMs to scale up and extend to other domains, tasks, and modalities faster. 3) We provide a primary but potential MLLM training framework optimized for modalities' extension. We also provide baseline models, comprehensive experimental observations, and analysis to accelerate future research. Codes and datasets are now available at https://github.com/OpenLAMM/LAMM.
With the development of deep learning, the field of face anti-spoofing (FAS) has witnessed great progress. FAS is usually considered a classification problem, where each class is assumed to contain a single cluster optimized by softmax loss. In practical deployment, one class can contain several local clusters, and a single-center is insufficient to capture the inherent structure of the FAS data. However, few approaches consider large distribution discrepancies in the field of FAS. In this work, we propose a unified framework called Latent Distribution Adjusting (LDA) with properties of latent, discriminative, adaptive, generic to improve the robustness of the FAS model by adjusting complex data distribution with multiple prototypes. 1) Latent. LDA attempts to model the data of each class as a Gaussian mixture distribution, and acquire a flexible number of centers for each class in the last fully connected layer implicitly. 2) Discriminative. To enhance the intra-class compactness and inter-class discrepancy, we propose a margin-based loss for providing distribution constrains for prototype learning. 3) Adaptive. To make LDA more efficient and decrease redundant parameters, we propose Adaptive Prototype Selection (APS) by selecting the appropriate number of centers adaptively according to different distributions. 4) Generic. Furthermore, LDA can adapt to unseen distribution by utilizing very few training data without re-training. Extensive experiments demonstrate that our framework can 1) make the final representation space both intra-class compact and inter-class separable, 2) outperform the state-of-the-art methods on multiple standard FAS benchmarks.
The recent success of pre-trained 2D vision models is mostly attributable to learning from large-scale datasets. However, compared with 2D image datasets, the current pre-training data of 3D point cloud is limited. To overcome this limitation, we propose a knowledge distillation method for 3D point cloud pre-trained models to acquire knowledge directly from the 2D representation learning model, particularly the image encoder of CLIP, through concept alignment. Specifically, we introduce a cross-attention mechanism to extract concept features from 3D point cloud and compare them with the semantic information from 2D images. In this scheme, the point cloud pre-trained models learn directly from rich information contained in 2D teacher models. Extensive experiments demonstrate that the proposed knowledge distillation scheme achieves higher accuracy than the state-of-the-art 3D pre-training methods for synthetic and real-world datasets on downstream tasks, including object classification, object detection, semantic segmentation, and part segmentation.
Though impressive performance has been achieved in specific visual realms (e.g. faces, dogs, and places), an omni-vision representation generalizing to many natural visual domains is highly desirable. But, existing benchmarks are biased and inefficient to evaluate the omni-vision representation -- these benchmarks either only include several specific realms, or cover most realms at the expense of subsuming numerous datasets that have extensive realm overlapping. In this paper, we propose Omni-Realm Benchmark (OmniBenchmark). It includes 21 realm-wise datasets with 7,372 concepts and 1,074,346 images. Without semantic overlapping, these datasets cover most visual realms comprehensively and meanwhile efficiently. In addition, we propose a new supervised contrastive learning framework, namely Relational Contrastive learning (ReCo), for a better omni-vision representation. Beyond pulling two instances from the same concept closer -- the typical supervised contrastive learning framework -- ReCo also pulls two instances from the same semantic realm closer, encoding the semantic relation between concepts, and facilitating omni-vision representation learning. We benchmark ReCo and other advances in omni-vision representation studies that are different in architectures (from CNNs to transformers) and in learning paradigms (from supervised learning to self-supervised learning) on OmniBenchmark. We illustrate the superior of ReCo to other supervised contrastive learning methods and reveal multiple practical observations to facilitate future research.
The field of face anti-spoofing (FAS) has witnessed great progress with the surge of deep learning. Due to its data-driven nature, existing FAS methods are sensitive to the noise in the dataset, which will hurdle the learning process. However, very few works consider noise modeling in FAS. In this work, we attempt to fill this gap by automatically addressing the noise problem from both label and data perspectives in a probabilistic manner. Specifically, we propose a unified framework called Dual Probabilistic Modeling (DPM), with two dedicated modules, DPM-LQ (Label Quality aware learning) and DPM-DQ (Data Quality aware learning). Both modules are designed based on the assumption that data and label should form coherent probabilistic distributions. DPM-LQ is able to produce robust feature representations without overfitting to the distribution of noisy semantic labels. DPM-DQ can eliminate data noise from `False Reject' and `False Accept' during inference by correcting the prediction confidence of noisy data based on its quality distribution. Both modules can be incorporated into existing deep networks seamlessly and efficiently. Furthermore, we propose the generalized DPM to address the noise problem in practical usage without the need of semantic annotations. Extensive experiments demonstrate that this probabilistic modeling can 1) significantly improve the accuracy, and 2) make the model robust to the noise in real-world datasets. Without bells and whistles, our proposed DPM achieves state-of-the-art performance on multiple standard FAS benchmarks.
In computer vision, pre-training models based on largescale supervised learning have been proven effective over the past few years. However, existing works mostly focus on learning from individual task with single data source (e.g., ImageNet for classification or COCO for detection). This restricted form limits their generalizability and usability due to the lack of vast semantic information from various tasks and data sources. Here, we demonstrate that jointly learning from heterogeneous tasks and multiple data sources contributes to universal visual representation, leading to better transferring results of various downstream tasks. Thus, learning how to bridge the gaps among different tasks and data sources is the key, but it still remains an open question. In this work, we propose a representation learning framework called X-Learner, which learns the universal feature of multiple vision tasks supervised by various sources, with expansion and squeeze stage: 1) Expansion Stage: X-Learner learns the task-specific feature to alleviate task interference and enrich the representation by reconciliation layer. 2) Squeeze Stage: X-Learner condenses the model to a reasonable size and learns the universal and generalizable representation for various tasks transferring. Extensive experiments demonstrate that X-Learner achieves strong performance on different tasks without extra annotations, modalities and computational costs compared to existing representation learning methods. Notably, a single X-Learner model shows remarkable gains of 3.0%, 3.3% and 1.8% over current pretrained models on 12 downstream datasets for classification, object detection and semantic segmentation.
Large-scale datasets play a vital role in computer vision. Existing datasets are either collected according to heuristic label systems or annotated blindly without differentiation to samples, making them inefficient and unscalable. How to systematically collect, annotate and build a mega-scale dataset remains an open question. In this work, we advocate building a high-quality vision dataset actively and continually on a comprehensive label system. Specifically, we contribute Bamboo Dataset, a mega-scale and information-dense dataset for both classification and detection. Bamboo aims to populate the comprehensive categories with 69M image classification annotations and 170,586 object bounding box annotations. Compared to ImageNet22K and Objects365, models pre-trained on Bamboo achieve superior performance among various downstream tasks (6.2% gains on classification and 2.1% gains on detection). In addition, we provide valuable observations regarding large-scale pre-training from over 1,000 experiments. Due to its scalable nature on both label system and annotation pipeline, Bamboo will continue to grow and benefit from the collective efforts of the community, which we hope would pave the way for more general vision models.
The foundation model is not the last chapter of the model production pipeline. Transferring with few data in a general way to thousands of downstream tasks is becoming a trend of the foundation model's application. In this paper, we proposed a universal transfer framework: One to Transfer All (OTA) to transfer any Vision Foundation Model (VFM) to any downstream tasks with few downstream data. We first transfer a VFM to a task-specific model by Image Re-representation Fine-tuning (IRF) then distilling knowledge from a task-specific model to a deployed model with data produced by Downstream Image-Guided Generation (DIGG). OTA has no dependency on upstream data, VFM, and downstream tasks when transferring. It also provides a way for VFM researchers to release their upstream information for better transferring but not leaking data due to privacy requirements. Massive experiments validate the effectiveness and superiority of our methods in few data setting. Our code will be released.
Enormous waves of technological innovations over the past several years, marked by the advances in AI technologies, are profoundly reshaping the industry and the society. However, down the road, a key challenge awaits us, that is, our capability of meeting rapidly-growing scenario-specific demands is severely limited by the cost of acquiring a commensurate amount of training data. This difficult situation is in essence due to limitations of the mainstream learning paradigm: we need to train a new model for each new scenario, based on a large quantity of well-annotated data and commonly from scratch. In tackling this fundamental problem, we move beyond and develop a new learning paradigm named INTERN. By learning with supervisory signals from multiple sources in multiple stages, the model being trained will develop strong generalizability. We evaluate our model on 26 well-known datasets that cover four categories of tasks in computer vision. In most cases, our models, adapted with only 10% of the training data in the target domain, outperform the counterparts trained with the full set of data, often by a significant margin. This is an important step towards a promising prospect where such a model with general vision capability can dramatically reduce our reliance on data, thus expediting the adoption of AI technologies. Furthermore, revolving around our new paradigm, we also introduce a new data system, a new architecture, and a new benchmark, which, together, form a general vision ecosystem to support its future development in an open and inclusive manner.