additional authors not shown
Abstract:Recent advances in Vision-Language Models (VLMs) have enabled mobile agents to perceive and interact with real-world mobile environments based on human instructions. However, the current fully autonomous paradigm poses potential safety risks when model understanding or reasoning capabilities are insufficient. To address this challenge, we first introduce \textbf{InquireBench}, a comprehensive benchmark specifically designed to evaluate mobile agents' capabilities in safe interaction and proactive inquiry with users, encompassing 5 categories and 22 sub-categories, where most existing VLM-based agents demonstrate near-zero performance. In this paper, we aim to develop an interactive system that actively seeks human confirmation at critical decision points. To achieve this, we propose \textbf{InquireMobile}, a novel model inspired by reinforcement learning, featuring a two-stage training strategy and an interactive pre-action reasoning mechanism. Finally, our model achieves an 46.8% improvement in inquiry success rate and the best overall success rate among existing baselines on InquireBench. We will open-source all datasets, models, and evaluation codes to facilitate development in both academia and industry.
Abstract:Conversion rate (CVR) prediction is a core component of online advertising systems, where the attribution mechanisms-rules for allocating conversion credit across user touchpoints-fundamentally determine label generation and model optimization. While many industrial platforms support diverse attribution mechanisms (e.g., First-Click, Last-Click, Linear, and Data-Driven Multi-Touch Attribution), conventional approaches restrict model training to labels from a single production-critical attribution mechanism, discarding complementary signals in alternative attribution perspectives. To address this limitation, we propose a novel Multi-Attribution Learning (MAL) framework for CVR prediction that integrates signals from multiple attribution perspectives to better capture the underlying patterns driving user conversions. Specifically, MAL is a joint learning framework consisting of two core components: the Attribution Knowledge Aggregator (AKA) and the Primary Target Predictor (PTP). AKA is implemented as a multi-task learner that integrates knowledge extracted from diverse attribution labels. PTP, in contrast, focuses on the task of generating well-calibrated conversion probabilities that align with the system-optimized attribution metric (e.g., CVR under the Last-Click attribution), ensuring direct compatibility with industrial deployment requirements. Additionally, we propose CAT, a novel training strategy that leverages the Cartesian product of all attribution label combinations to generate enriched supervision signals. This design substantially enhances the performance of the attribution knowledge aggregator. Empirical evaluations demonstrate the superiority of MAL over single-attribution learning baselines, achieving +0.51% GAUC improvement on offline metrics. Online experiments demonstrate that MAL achieved a +2.6% increase in ROI (Return on Investment).
Abstract:Creative image in advertising is the heart and soul of e-commerce platform. An eye-catching creative image can enhance the shopping experience for users, boosting income for advertisers and advertising revenue for platforms. With the advent of AIGC technology, advertisers can produce large quantities of creative images at minimal cost. However, they struggle to assess the creative quality to select. Existing methods primarily focus on creative ranking, which fails to address the need for explainable creative selection. In this work, we propose the first paradigm for explainable creative assessment and selection. Powered by multimodal large language models (MLLMs), our approach integrates the assessment and selection of creative images into a natural language generation task. To facilitate this research, we construct CreativePair, the first comparative reasoning-induced creative dataset featuring 8k annotated image pairs, with each sample including a label indicating which image is superior. Additionally, we introduce Creative4U (pronounced Creative for You), a MLLMs-based creative selector that takes into account users' interests. Through Reason-to-Select RFT, which includes supervised fine-tuning with Chain-of-Thought (CoT-SFT) and Group Relative Policy Optimization (GRPO) based reinforcement learning, Creative4U is able to evaluate and select creative images accurately. Both offline and online experiments demonstrate the effectiveness of our approach. Our code and dataset will be made public to advance research and industrial applications.
Abstract:Reinforcement learning for LLM reasoning has rapidly emerged as a prominent research area, marked by a significant surge in related studies on both algorithmic innovations and practical applications. Despite this progress, several critical challenges remain, including the absence of standardized guidelines for employing RL techniques and a fragmented understanding of their underlying mechanisms. Additionally, inconsistent experimental settings, variations in training data, and differences in model initialization have led to conflicting conclusions, obscuring the key characteristics of these techniques and creating confusion among practitioners when selecting appropriate techniques. This paper systematically reviews widely adopted RL techniques through rigorous reproductions and isolated evaluations within a unified open-source framework. We analyze the internal mechanisms, applicable scenarios, and core principles of each technique through fine-grained experiments, including datasets of varying difficulty, model sizes, and architectures. Based on these insights, we present clear guidelines for selecting RL techniques tailored to specific setups, and provide a reliable roadmap for practitioners navigating the RL for the LLM domain. Finally, we reveal that a minimalist combination of two techniques can unlock the learning capability of critic-free policies using vanilla PPO loss. The results demonstrate that our simple combination consistently improves performance, surpassing strategies like GRPO and DAPO.
Abstract:Although Vision Language Models (VLMs) exhibit strong perceptual abilities and impressive visual reasoning, they struggle with attention to detail and precise action planning in complex, dynamic environments, leading to subpar performance. Real-world tasks typically require complex interactions, advanced spatial reasoning, long-term planning, and continuous strategy refinement, usually necessitating understanding the physics rules of the target scenario. However, evaluating these capabilities in real-world scenarios is often prohibitively expensive. To bridge this gap, we introduce DeepPHY, a novel benchmark framework designed to systematically evaluate VLMs' understanding and reasoning about fundamental physical principles through a series of challenging simulated environments. DeepPHY integrates multiple physical reasoning environments of varying difficulty levels and incorporates fine-grained evaluation metrics. Our evaluation finds that even state-of-the-art VLMs struggle to translate descriptive physical knowledge into precise, predictive control.
Abstract:Online advertising systems typically use a cascaded architecture to manage massive requests and candidate volumes, where the ranking stages allocate traffic based on eCPM (predicted CTR $\times$ Bid). With the increasing popularity of auto-bidding strategies, the inconsistency between the computationally sensitive retrieval stage and the ranking stages becomes more pronounced, as the former cannot access precise, real-time bids for the vast ad corpus. This discrepancy leads to sub-optimal platform revenue and advertiser outcomes. To tackle this problem, we propose Bidding-Aware Retrieval (BAR), a model-based retrieval framework that addresses multi-stage inconsistency by incorporating ad bid value into the retrieval scoring function. The core innovation is Bidding-Aware Modeling, incorporating bid signals through monotonicity-constrained learning and multi-task distillation to ensure economically coherent representations, while Asynchronous Near-Line Inference enables real-time updates to the embedding for market responsiveness. Furthermore, the Task-Attentive Refinement module selectively enhances feature interactions to disentangle user interest and commercial value signals. Extensive offline experiments and full-scale deployment across Alibaba's display advertising platform validated BAR's efficacy: 4.32% platform revenue increase with 22.2% impression lift for positively-operated advertisements.
Abstract:Recommender systems are among the most impactful applications of artificial intelligence, serving as critical infrastructure connecting users, merchants, and platforms. However, most current industrial systems remain heavily reliant on historical co-occurrence patterns and log-fitting objectives, i.e., optimizing for past user interactions without explicitly modeling user intent. This log-fitting approach often leads to overfitting to narrow historical preferences, failing to capture users' evolving and latent interests. As a result, it reinforces filter bubbles and long-tail phenomena, ultimately harming user experience and threatening the sustainability of the whole recommendation ecosystem. To address these challenges, we rethink the overall design paradigm of recommender systems and propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline. By integrating large language models (LLMs) into key stages of user interest mining, item retrieval, and explanation generation, RecGPT transforms log-fitting recommendation into an intent-centric process. To effectively align general-purpose LLMs to the above domain-specific recommendation tasks at scale, RecGPT incorporates a multi-stage training paradigm, which integrates reasoning-enhanced pre-alignment and self-training evolution, guided by a Human-LLM cooperative judge system. Currently, RecGPT has been fully deployed on the Taobao App. Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders: users benefit from increased content diversity and satisfaction, merchants and the platform gain greater exposure and conversions. These comprehensive improvement results across all stakeholders validates that LLM-driven, intent-centric design can foster a more sustainable and mutually beneficial recommendation ecosystem.
Abstract:Advertising text plays a critical role in determining click-through rates (CTR) in online advertising. Large Language Models (LLMs) offer significant efficiency advantages over manual ad text creation. However, LLM-generated ad texts do not guarantee higher CTR performance compared to human-crafted texts, revealing a gap between generation quality and online performance of ad texts. In this work, we propose a novel ad text generation method which optimizes for CTR through preference optimization from online feedback. Our approach adopts an innovative two-stage framework: (1) diverse ad text sampling via one-shot in-context learning, using retrieval-augmented generation (RAG) to provide exemplars with chain-of-thought (CoT) reasoning; (2) CTR-driven preference optimization from online feedback, which weighs preference pairs according to their CTR gains and confidence levels. Through our method, the resulting model enables end-to-end generation of high-CTR ad texts. Extensive experiments have demonstrated the effectiveness of our method in both offline and online metrics. Notably, we have applied our method on a large-scale online shopping platform and achieved significant CTR improvements, showcasing its strong applicability and effectiveness in advertising systems.
Abstract:Estimating individual-level treatment effect from observational data is a fundamental problem in causal inference and has attracted increasing attention in the fields of education, healthcare, and public policy.In this work, we concentrate on the study of disentangled representation methods that have shown promising outcomes by decomposing observed covariates into instrumental, confounding, and adjustment factors. However, most of the previous work has primarily revolved around generative models or hard decomposition methods for covariates, which often struggle to guarantee the attainment of precisely disentangled factors. In order to effectively model different causal relationships, we propose a novel treatment effect estimation algorithm that incorporates a mixture of experts with multi-head attention and a linear orthogonal regularizer to softly decompose the pre-treatment variables, and simultaneously eliminates selection bias via importance sampling re-weighting techniques. We conduct extensive experiments on both public semi-synthetic and real-world production datasets. The experimental results clearly demonstrate that our algorithm outperforms the state-of-the-art methods focused on individual treatment effects.
Abstract:Large-scale homepage recommendations face critical challenges from pseudo-negative samples caused by exposure bias, where non-clicks may indicate inattention rather than disinterest. Existing work lacks thorough analysis of invalid exposures and typically addresses isolated aspects (e.g., sampling strategies), overlooking the critical impact of pseudo-positive samples - such as homepage clicks merely to visit marketing portals. We propose a unified framework for large-scale homepage recommendation sampling and debiasing. Our framework consists of two key components: (1) a user intent-aware negative sampling module to filter invalid exposure samples, and (2) an intent-driven dual-debiasing module that jointly corrects exposure bias and click bias. Extensive online experiments on Taobao demonstrate the efficacy of our framework, achieving significant improvements in user click-through rates (UCTR) by 35.4\% and 14.5\% in two variants of the marketing block on the Taobao homepage, Baiyibutie and Taobaomiaosha.