Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Aaron Courville

MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling

Dec 17, 2021
Yusong Wu, Ethan Manilow, Yi Deng, Rigel Swavely, Kyle Kastner, Tim Cooijmans, Aaron Courville, Cheng-Zhi Anna Huang, Jesse Engel

  Access Paper or Ask Questions

DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization

Dec 09, 2021
Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, Sergey Levine

  Access Paper or Ask Questions

Multi-label Iterated Learning for Image Classification with Label Ambiguity

Nov 23, 2021
Sai Rajeswar, Pau Rodriguez, Soumye Singhal, David Vazquez, Aaron Courville

  Access Paper or Ask Questions

Chunked Autoregressive GAN for Conditional Waveform Synthesis

Oct 19, 2021
Max Morrison, Rithesh Kumar, Kundan Kumar, Prem Seetharaman, Aaron Courville, Yoshua Bengio

* Under review as a conference paper at ICLR 2022 

  Access Paper or Ask Questions

Unifying Likelihood-free Inference with Black-box Sequence Design and Beyond

Oct 06, 2021
Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron Courville

  Access Paper or Ask Questions

On Bonus-Based Exploration Methods in the Arcade Learning Environment

Sep 22, 2021
Adrien Ali Taïga, William Fedus, Marlos C. Machado, Aaron Courville, Marc G. Bellemare

* Published as a conference paper at ICLR 2020 
* Full version of arXiv:1908.02388 

  Access Paper or Ask Questions

Deep Reinforcement Learning at the Edge of the Statistical Precipice

Aug 30, 2021
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, Marc G. Bellemare

  Access Paper or Ask Questions

Pretraining Representations for Data-Efficient Reinforcement Learning

Jun 09, 2021
Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, Devon Hjelm, Philip Bachman, Aaron Courville

  Access Paper or Ask Questions

Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?

Jun 05, 2021
Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, Aaron Courville

* Accepted to ICML2021 as long talk 

  Access Paper or Ask Questions

A Variational Perspective on Diffusion-Based Generative Models and Score Matching

Jun 05, 2021
Chin-Wei Huang, Jae Hyun Lim, Aaron Courville

  Access Paper or Ask Questions

Hierarchical Video Generation for Complex Data

Jun 04, 2021
Lluis Castrejon, Nicolas Ballas, Aaron Courville

  Access Paper or Ask Questions

Understanding by Understanding Not: Modeling Negation in Language Models

May 07, 2021
Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R Devon Hjelm, Alessandro Sordoni, Aaron Courville

  Access Paper or Ask Questions

Iterated learning for emergent systematicity in VQA

May 03, 2021
Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, Aaron Courville

* Published as a conference paper at ICLR 2021. 9 pages main, 21 pages total including references and appendix 

  Access Paper or Ask Questions

Touch-based Curiosity for Sparse-Reward Tasks

Apr 01, 2021
Sai Rajeswar, Cyril Ibrahim, Nitin Surya, Florian Golemo, David Vazquez, Aaron Courville, Pedro O. Pinheiro

  Access Paper or Ask Questions

Learning Task Decomposition with Ordered Memory Policy Network

Mar 19, 2021
Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron Courville, Joshua B. Tenenbaum, Chuang Gan

  Access Paper or Ask Questions

Continuous Coordination As a Realistic Scenario for Lifelong Learning

Mar 04, 2021
Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, Sarath Chandar

  Access Paper or Ask Questions

Emergent Communication under Competition

Jan 25, 2021
Michael Noukhovitch, Travis LaCroix, Angeliki Lazaridou, Aaron Courville

* To be presented at AAMAS 2021 

  Access Paper or Ask Questions

StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling

Dec 15, 2020
Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald Metzler, Aaron Courville

  Access Paper or Ask Questions

Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization

Dec 10, 2020
Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, Aaron Courville

  Access Paper or Ask Questions

Gradient Starvation: A Learning Proclivity in Neural Networks

Nov 23, 2020
Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina Precup, Guillaume Lajoie

  Access Paper or Ask Questions

Unsupervised Learning of Dense Visual Representations

Nov 11, 2020
Pedro O. Pinheiro, Amjad Almahairi, Ryan Y. Benmaleck, Florian Golemo, Aaron Courville

  Access Paper or Ask Questions

NU-GAN: High resolution neural upsampling with GAN

Oct 22, 2020
Rithesh Kumar, Kundan Kumar, Vicki Anand, Yoshua Bengio, Aaron Courville

  Access Paper or Ask Questions

Neural Approximate Sufficient Statistics for Implicit Models

Oct 20, 2020
Yanzhi Chen, Dinghuai Zhang, Michael Gutmann, Aaron Courville, Zhanxing Zhu

  Access Paper or Ask Questions

Recursive Top-Down Production for Sentence Generation with Latent Trees

Oct 09, 2020
Shawn Tan, Yikang Shen, Timothy J. O'Donnell, Alessandro Sordoni, Aaron Courville

  Access Paper or Ask Questions

Supervised Seeded Iterated Learning for Interactive Language Learning

Oct 06, 2020
Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron Courville

  Access Paper or Ask Questions

Integrating Categorical Semantics into Unsupervised Domain Translation

Oct 03, 2020
Samuel Lavoie-Marchildon, Faruk Ahmed, Aaron Courville

* 21 pages. In submission to the International Conference on Learning Representation (ICLR) 2021 

  Access Paper or Ask Questions

Data-Efficient Reinforcement Learning with Momentum Predictive Representations

Jul 12, 2020
Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman

* The first two authors contributed equally to this work 

  Access Paper or Ask Questions

Generative Graph Perturbations for Scene Graph Prediction

Jul 11, 2020
Boris Knyazev, Harm de Vries, Cătălina Cangea, Graham W. Taylor, Aaron Courville, Eugene Belilovsky

*, ICML Workshop 2020 on "Object-Oriented Learning (OOL): Perception, Representation, and Reasoning" 

  Access Paper or Ask Questions

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

Jun 09, 2020
Jae Hyun Lim, Aaron Courville, Christopher Pal, Chin-Wei Huang

* accepted in ICML 2020 

  Access Paper or Ask Questions