Sid
Abstract:Distribution matching distillation (DMD) aligns a multi-step generator with its few-step counterpart to enable high-quality generation under low inference cost. However, DMD tends to suffer from mode collapse, as its reverse-KL formulation inherently encourages mode-seeking behavior, for which existing remedies typically rely on perceptual or adversarial regularization, thereby incurring substantial computational overhead and training instability. In this work, we propose a role-separated distillation framework that explicitly disentangles the roles of distilled steps: the first step is dedicated to preserving sample diversity via a target-prediction (e.g., v-prediction) objective, while subsequent steps focus on quality refinement under the standard DMD loss, with gradients from the DMD objective blocked at the first step. We term this approach Diversity-Preserved DMD (DP-DMD), which, despite its simplicity -- no perceptual backbone, no discriminator, no auxiliary networks, and no additional ground-truth images -- preserves sample diversity while maintaining visual quality on par with state-of-the-art methods in extensive text-to-image experiments.
Abstract:We propose SWE-Universe, a scalable and efficient framework for automatically constructing real-world software engineering (SWE) verifiable environments from GitHub pull requests (PRs). To overcome the prevalent challenges of automatic building, such as low production yield, weak verifiers, and prohibitive cost, our framework utilizes a building agent powered by an efficient custom-trained model. This agent employs iterative self-verification and in-loop hacking detection to ensure the reliable generation of high-fidelity, verifiable tasks. Using this method, we scale the number of real-world multilingual SWE environments to a million scale (807,693). We demonstrate the profound value of our environments through large-scale agentic mid-training and reinforcement learning. Finally, we applied this technique to Qwen3-Max-Thinking and achieved a score of 75.3% on SWE-Bench Verified. Our work provides both a critical resource and a robust methodology to advance the next generation of coding agents.
Abstract:Safe UAV emergency landing requires more than just identifying flat terrain; it demands understanding complex semantic risks (e.g., crowds, temporary structures) invisible to traditional geometric sensors. In this paper, we propose a novel framework leveraging Remote Sensing (RS) imagery and Multimodal Large Language Models (MLLMs) for global context-aware landing site assessment. Unlike local geometric methods, our approach employs a coarse-to-fine pipeline: first, a lightweight semantic segmentation module efficiently pre-screens candidate areas; second, a vision-language reasoning agent fuses visual features with Point-of-Interest (POI) data to detect subtle hazards. To validate this approach, we construct and release the Emergency Landing Site Selection (ELSS) benchmark. Experiments demonstrate that our framework significantly outperforms geometric baselines in risk identification accuracy. Furthermore, qualitative results confirm its ability to generate human-like, interpretable justifications, enhancing trust in automated decision-making. The benchmark dataset is publicly accessible at https://anonymous.4open.science/r/ELSS-dataset-43D7.
Abstract:Interactive 3D model texture editing presents enhanced opportunities for creating 3D assets, with freehand drawing style offering the most intuitive experience. However, existing methods primarily support sketch-based interactions for outlining, while the utilization of coarse-grained scribble-based interaction remains limited. Furthermore, current methodologies often encounter challenges due to the abstract nature of scribble instructions, which can result in ambiguous editing intentions and unclear target semantic locations. To address these issues, we propose ScribbleSense, an editing method that combines multimodal large language models (MLLMs) and image generation models to effectively resolve these challenges. We leverage the visual capabilities of MLLMs to predict the editing intent behind the scribbles. Once the semantic intent of the scribble is discerned, we employ globally generated images to extract local texture details, thereby anchoring local semantics and alleviating ambiguities concerning the target semantic locations. Experimental results indicate that our method effectively leverages the strengths of MLLMs, achieving state-of-the-art interactive editing performance for scribble-based texture editing.
Abstract:Large language models (LLMs) are increasingly used as tool-augmented agents for multi-step decision making, yet training robust tool-using agents remains challenging. Existing methods still require manual intervention, depend on non-verifiable simulated environments, rely exclusively on either supervised fine-tuning (SFT) or reinforcement learning (RL), and struggle with stable long-horizon, multi-turn learning. To address these challenges, we introduce ASTRA, a fully automated end-to-end framework for training tool-augmented language model agents via scalable data synthesis and verifiable reinforcement learning. ASTRA integrates two complementary components. First, a pipeline that leverages the static topology of tool-call graphs synthesizes diverse, structurally grounded trajectories, instilling broad and transferable tool-use competence. Second, an environment synthesis framework that captures the rich, compositional topology of human semantic reasoning converts decomposed question-answer traces into independent, code-executable, and rule-verifiable environments, enabling deterministic multi-turn RL. Based on this method, we develop a unified training methodology that integrates SFT with online RL using trajectory-level rewards to balance task completion and interaction efficiency. Experiments on multiple agentic tool-use benchmarks demonstrate that ASTRA-trained models achieve state-of-the-art performance at comparable scales, approaching closed-source systems while preserving core reasoning ability. We release the full pipelines, environments, and trained models at https://github.com/LianjiaTech/astra.
Abstract:Open world object detection faces a significant challenge in domain-invariant representation, i.e., implicit non-causal factors. Most domain generalization (DG) methods based on domain adversarial learning (DAL) pay much attention to learn domain-invariant information, but often overlook the potential non-causal factors. We unveil two critical causes: 1) The domain discriminator-based DAL method is subject to the extremely sparse domain label, i.e., assigning only one domain label to each dataset, thus can only associate explicit non-causal factor, which is incredibly limited. 2) The non-causal factors, induced by unidentified data bias, are excessively implicit and cannot be solely discerned by conventional DAL paradigm. Based on these key findings, inspired by the Granular-Ball perspective, we propose an improved DAL method, i.e., GB-DAL. The proposed GB-DAL utilizes Prototype-based Granular Ball Splitting (PGBS) module to generate more dense domains from limited datasets, akin to more fine-grained granular balls, indicating more potential non-causal factors. Inspired by adversarial perturbations akin to non-causal factors, we propose a Simulated Non-causal Factors (SNF) module as a means of data augmentation to reduce the implicitness of non-causal factors, and facilitate the training of GB-DAL. Comparative experiments on numerous benchmarks demonstrate that our method achieves better generalization performance in novel circumstances.
Abstract:High-quality evaluation benchmarks are pivotal for deploying Large Language Models (LLMs) in Automated Code Review (ACR). However, existing benchmarks suffer from two critical limitations: first, the lack of multi-language support in repository-level contexts, which restricts the generalizability of evaluation results; second, the reliance on noisy, incomplete ground truth derived from raw Pull Request (PR) comments, which constrains the scope of issue detection. To address these challenges, we introduce AACR-Bench a comprehensive benchmark that provides full cross-file context across multiple programming languages. Unlike traditional datasets, AACR-Bench employs an "AI-assisted, Expert-verified" annotation pipeline to uncover latent defects often overlooked in original PRs, resulting in a 285\% increase in defect coverage. Extensive evaluations of mainstream LLMs on AACR-Bench reveal that previous assessments may have either misjudged or only partially captured model capabilities due to data limitations. Our work establishes a more rigorous standard for ACR evaluation and offers new insights on LLM based ACR, i.e., the granularity/level of context and the choice of retrieval methods significantly impact ACR performance, and this influence varies depending on the LLM, programming language, and the LLM usage paradigm e.g., whether an Agent architecture is employed. The code, data, and other artifacts of our evaluation set are available at https://github.com/alibaba/aacr-bench .
Abstract:Real-world perception and interaction are inherently multimodal, encompassing not only language but also vision and speech, which motivates the development of "Omni" MLLMs that support both multimodal inputs and multimodal outputs. While a sequence of omni MLLMs has emerged, most existing systems still rely on additional expert components to achieve multimodal generation, limiting the simplicity of unified training and inference. Autoregressive (AR) modeling, with a single token stream, a single next-token objective, and a single decoder, is an elegant and scalable foundation in the text domain. Motivated by this, we present AR-Omni, a unified any-to-any model in the autoregressive paradigm without any expert decoders. AR-Omni supports autoregressive text and image generation, as well as streaming speech generation, all under a single Transformer decoder. We further address three practical issues in unified AR modeling: modality imbalance via task-aware loss reweighting, visual fidelity via a lightweight token-level perceptual alignment loss for image tokens, and stability-creativity trade-offs via a finite-state decoding mechanism. Empirically, AR-Omni achieves strong quality across three modalities while remaining real-time, achieving a 0.88 real-time factor for speech generation.
Abstract:Code completion has become a central task, gaining significant attention with the rise of large language model (LLM)-based tools in software engineering. Although recent advances have greatly improved LLMs' code completion abilities, evaluation methods have not advanced equally. Most current benchmarks focus solely on functional correctness of code completions based on given context, overlooking models' ability to follow user instructions during completion-a common scenario in LLM-assisted programming. To address this limitation, we present the first instruction-guided code completion benchmark, Controllable Code Completion Benchmark (C3-Bench), comprising 2,195 carefully designed completion tasks. Through comprehensive evaluation of over 40 mainstream LLMs across C3-Bench and conventional benchmarks, we reveal substantial gaps in instruction-following capabilities between open-source and advanced proprietary models during code completion tasks. Moreover, we develop a straightforward data synthesis pipeline that leverages Qwen2.5-Coder to generate high-quality instruction-completion pairs for supervised fine-tuning (SFT). The resulting model, Qwen2.5-Coder-C3, achieves state-of-the-art performance on C3-Bench. Our findings provide valuable insights for enhancing LLMs' code completion and instruction-following capabilities, establishing new directions for future research in code LLMs. To facilitate reproducibility and foster further research in code LLMs, we open-source all code, datasets, and models.
Abstract:As a pivotal technique for improving the defense of deep models, adversarial robustness transfer via distillation has demonstrated remarkable success in conventional image classification tasks. However, this paradigm encounters critical challenges when applied to vision-language models (VLM) (e.g., CLIP): constructing adversarially robust teacher for large-scale multi-modal models demands prohibitively high computational resources. We bridge this gap by revealing an interesting phenomenon: vanilla CLIP (without adversarial training) exhibits intrinsic defensive capabilities against adversarial examples generated by another CLIP with different architectures. We formally define this as proxy adversarial robustness, and naturally propose a Heterogeneous Proxy Transfer (HPT) framework that establishes cross-architectural robustness distillation channels between CLIP variants, effortlessly enabling the VLM robustness transfer from proxy to target models. Yet, such proxy transfer paradigm easily induces severe overfitting, leading to a sharp degradation in zero-shot natural generalization. To resolve that, we design Generalization-Pivot Decoupling (GPD) by leveraging the difference in learning rate scheduling. This decouples the proxy transfer process into a generalization-anchored warm-up that maintains generalization and a generalization-pulled HPT that promotes adversarial robustness, to achieve an equilibrium between natural generalization and adversarial robustness. Extensive experiments on 15 zero-shot datasets demonstrate the effectiveness of our HPT-GPD method. The code is available at the website of github.com/fxw13/HPT-GPD.