Sid
Abstract:Existing reinforcement learning (RL) methods struggle with complex dynamical systems that demand interactions at high frequencies or irregular time intervals. Continuous-time RL (CTRL) has emerged as a promising alternative by replacing discrete-time Bellman recursion with differential value functions defined as viscosity solutions of the Hamilton--Jacobi--Bellman (HJB) equation. While CTRL has shown promise, its applications have been largely limited to the single-agent domain. This limitation stems from two key challenges: (i) conventional solution methods for HJB equations suffer from the curse of dimensionality (CoD), making them intractable in high-dimensional systems; and (ii) even with HJB-based learning approaches, accurately approximating centralized value functions in multi-agent settings remains difficult, which in turn destabilizes policy training. In this paper, we propose a CT-MARL framework that uses physics-informed neural networks (PINNs) to approximate HJB-based value functions at scale. To ensure the value is consistent with its differential structure, we align value learning with value-gradient learning by introducing a Value Gradient Iteration (VGI) module that iteratively refines value gradients along trajectories. This improves gradient fidelity, in turn yielding more accurate values and stronger policy learning. We evaluate our method using continuous-time variants of standard benchmarks, including multi-agent particle environment (MPE) and multi-agent MuJoCo. Our results demonstrate that our approach consistently outperforms existing continuous-time RL baselines and scales to complex multi-agent dynamics.
Abstract:The introduction of negative labels (NLs) has proven effective in enhancing Out-of-Distribution (OOD) detection. However, existing methods often lack an understanding of OOD images, making it difficult to construct an accurate negative space. In addition, the presence of false negative labels significantly degrades their near-OOD performance. To address these issues, we propose shaping an Adaptive Negative Textual Space (ANTS) by leveraging the understanding and reasoning capabilities of multimodal large language models (MLLMs). Specifically, we identify images likely to be OOD samples as negative images and prompt the MLLM to describe these images, generating expressive negative sentences that precisely characterize the OOD distribution and enhance far-OOD detection. For the near-OOD setting, where OOD samples resemble the in-distribution (ID) subset, we first identify the subset of ID classes that are visually similar to negative images and then leverage the reasoning capability of MLLMs to generate visually similar negative labels tailored to this subset, effectively reducing false negatives and improving near-OOD detection. To balance these two types of negative textual spaces, we design an adaptive weighted score that enables the method to handle different OOD task settings (near-OOD and far-OOD) without relying on task-specific prior knowledge, making it highly adaptable in open environments. On the ImageNet benchmark, our ANTS significantly reduces the FPR95 by 4.2\%, establishing a new state-of-the-art. Furthermore, our method is training-free and zero-shot, enabling high scalability.
Abstract:Large language models (LLMs) serve as an active and promising field of generative artificial intelligence and have demonstrated abilities to perform complex tasks in multiple domains, including mathematical and scientific reasoning. In this work, we construct a novel agent framework for solving representative problems in scientific computing. The proposed agent, incorporating a "rewriting-resolution-review-revision" logical chain via three reasoning LLMs (functioning as the Consultant, Reviewer, and Programmer, respectively), is integrated in a collaborative and interactive manner. The Consultant module endows the agent with knowledge transfer capabilities to link problems to professional domain insights, thereby rewriting problem descriptions through text augmentation. The Programmer module is responsible for generating and executing well-structured code to deliver the problem resolution. The Reviewer module equips the agent with the capacity for self-debugging and self-refinement through interactive feedback with code runtime outputs. By leveraging the end-to-end review mechanism, the executable code provided by the Programmer attains the iterative revision. A comprehensive evaluation is conducted on the performance of the proposed agent framework in solving PDEs, ill-conditioned linear systems, and data-driven physical analysis problems. Compared to single-model, this collaborative framework significantly improves the bug-free code generation rate and reduces the occurrence of non-physical solutions, thereby establishing a highly reliable framework for autonomous code generation based on natural language descriptions. The review mechanism improved the average execution success (bug-free code and non-NaN solutions) rate of the latest reasoning models. In summary, our agent framework establishes automatic code generation and review as a promising scientific computing paradigm.
Abstract:Skin images from real-world clinical practice are often limited, resulting in a shortage of training data for deep-learning models. While many studies have explored skin image synthesis, existing methods often generate low-quality images and lack control over the lesion's location and type. To address these limitations, we present LF-VAR, a model leveraging quantified lesion measurement scores and lesion type labels to guide the clinically relevant and controllable synthesis of skin images. It enables controlled skin synthesis with specific lesion characteristics based on language prompts. We train a multiscale lesion-focused Vector Quantised Variational Auto-Encoder (VQVAE) to encode images into discrete latent representations for structured tokenization. Then, a Visual AutoRegressive (VAR) Transformer trained on tokenized representations facilitates image synthesis. Lesion measurement from the lesion region and types as conditional embeddings are integrated to enhance synthesis fidelity. Our method achieves the best overall FID score (average 0.74) among seven lesion types, improving upon the previous state-of-the-art (SOTA) by 6.3%. The study highlights our controllable skin synthesis model's effectiveness in generating high-fidelity, clinically relevant synthetic skin images. Our framework code is available at https://github.com/echosun1996/LF-VAR.
Abstract:The increasing adoption of large language models (LLMs) in software engineering necessitates rigorous security evaluation of their generated code. However, existing benchmarks are inadequate, as they focus on isolated code snippets, employ unstable evaluation methods that lack reproducibility, and fail to connect the quality of input context with the security of the output. To address these gaps, we introduce A.S.E (AI Code Generation Security Evaluation), a benchmark for repository-level secure code generation. A.S.E constructs tasks from real-world repositories with documented CVEs, preserving full repository context like build systems and cross-file dependencies. Its reproducible, containerized evaluation framework uses expert-defined rules to provide stable, auditable assessments of security, build quality, and generation stability. Our evaluation of leading LLMs on A.S.E reveals three key findings: (1) Claude-3.7-Sonnet achieves the best overall performance. (2) The security gap between proprietary and open-source models is narrow; Qwen3-235B-A22B-Instruct attains the top security score. (3) Concise, ``fast-thinking'' decoding strategies consistently outperform complex, ``slow-thinking'' reasoning for security patching.
Abstract:Map-to-map matching is a critical task for aligning spatial data across heterogeneous sources, yet it remains challenging due to the lack of ground truth correspondences, sparse node features, and scalability demands. In this paper, we propose an unsupervised graph-based framework that addresses these challenges through three key innovations. First, our method is an unsupervised learning approach that requires no training data, which is crucial for large-scale map data where obtaining labeled training samples is challenging. Second, we introduce pseudo coordinates that capture the relative spatial layout of nodes within each map, which enhances feature discriminability and enables scale-invariant learning. Third, we design an mechanism to adaptively balance feature and geometric similarity, as well as a geometric-consistent loss function, ensuring robustness to noisy or incomplete coordinate data. At the implementation level, to handle large-scale maps, we develop a tile-based post-processing pipeline with overlapping regions and majority voting, which enables parallel processing while preserving boundary coherence. Experiments on real-world datasets demonstrate that our method achieves state-of-the-art accuracy in matching tasks, surpassing existing methods by a large margin, particularly in high-noise and large-scale scenarios. Our framework provides a scalable and practical solution for map alignment, offering a robust and efficient alternative to traditional approaches.
Abstract:Conversion rate (CVR) prediction is a core component of online advertising systems, where the attribution mechanisms-rules for allocating conversion credit across user touchpoints-fundamentally determine label generation and model optimization. While many industrial platforms support diverse attribution mechanisms (e.g., First-Click, Last-Click, Linear, and Data-Driven Multi-Touch Attribution), conventional approaches restrict model training to labels from a single production-critical attribution mechanism, discarding complementary signals in alternative attribution perspectives. To address this limitation, we propose a novel Multi-Attribution Learning (MAL) framework for CVR prediction that integrates signals from multiple attribution perspectives to better capture the underlying patterns driving user conversions. Specifically, MAL is a joint learning framework consisting of two core components: the Attribution Knowledge Aggregator (AKA) and the Primary Target Predictor (PTP). AKA is implemented as a multi-task learner that integrates knowledge extracted from diverse attribution labels. PTP, in contrast, focuses on the task of generating well-calibrated conversion probabilities that align with the system-optimized attribution metric (e.g., CVR under the Last-Click attribution), ensuring direct compatibility with industrial deployment requirements. Additionally, we propose CAT, a novel training strategy that leverages the Cartesian product of all attribution label combinations to generate enriched supervision signals. This design substantially enhances the performance of the attribution knowledge aggregator. Empirical evaluations demonstrate the superiority of MAL over single-attribution learning baselines, achieving +0.51% GAUC improvement on offline metrics. Online experiments demonstrate that MAL achieved a +2.6% increase in ROI (Return on Investment).
Abstract:This work studies the challenge of transfer animations between characters whose skeletal topologies differ substantially. While many techniques have advanced retargeting techniques in decades, transfer motions across diverse topologies remains less-explored. The primary obstacle lies in the inherent topological inconsistency between source and target skeletons, which restricts the establishment of straightforward one-to-one bone correspondences. Besides, the current lack of large-scale paired motion datasets spanning different topological structures severely constrains the development of data-driven approaches. To address these limitations, we introduce Motion2Motion, a novel, training-free framework. Simply yet effectively, Motion2Motion works with only one or a few example motions on the target skeleton, by accessing a sparse set of bone correspondences between the source and target skeletons. Through comprehensive qualitative and quantitative evaluations, we demonstrate that Motion2Motion achieves efficient and reliable performance in both similar-skeleton and cross-species skeleton transfer scenarios. The practical utility of our approach is further evidenced by its successful integration in downstream applications and user interfaces, highlighting its potential for industrial applications. Code and data are available at https://lhchen.top/Motion2Motion.
Abstract:Complex and diverse ultrastructural features can indicate the type, progression, and prognosis of kidney diseases. Recently, computational pathology combined with deep learning methods has shown tremendous potential in advancing automatic morphological analysis of glomerular ultrastructure. However, current research predominantly focuses on the recognition of individual ultrastructure, which makes it challenging to meet practical diagnostic needs. In this study, we propose the glomerular morphometry framework of ultrastructural characterization (Glo-DMU), which is grounded on three deep models: the ultrastructure segmentation model, the glomerular filtration barrier region classification model, and the electron-dense deposits detection model. Following the conventional protocol of renal biopsy diagnosis, this framework simultaneously quantifies the three most widely used ultrastructural features: the thickness of glomerular basement membrane, the degree of foot process effacement, and the location of electron-dense deposits. We evaluated the 115 patients with 9 renal pathological types in real-world diagnostic scenarios, demonstrating good consistency between automatic quantification results and morphological descriptions in the pathological reports. Glo-DMU possesses the characteristics of full automation, high precision, and high throughput, quantifying multiple ultrastructural features simultaneously, and providing an efficient tool for assisting renal pathologists.
Abstract:Despite their potential to enhance children's learning experiences, AI-enabled AR technologies are predominantly used in ways that position children as consumers rather than creators. We introduce Capybara, an AR-based and AI-powered visual programming environment that empowers children to create, customize, and program 3D characters overlaid onto the physical world. Capybara enables children to create virtual characters and accessories using text-to-3D generative AI models, and to animate these characters through auto-rigging and body tracking. In addition, our system employs vision-based AI models to recognize physical objects, allowing children to program interactive behaviors between virtual characters and their physical surroundings. We demonstrate the expressiveness of Capybara through a set of novel AR experiences. We conducted user studies with 20 children in the United States and Argentina. Our findings suggest that Capybara can empower children to harness AI in authoring personalized and engaging AR experiences that seamlessly bridge the virtual and physical worlds.