Alert button
Picture for Lei Zhang

Lei Zhang

Alert button

AcademicGPT: Empowering Academic Research

Nov 21, 2023
Shufa Wei, Xiaolong Xu, Xianbiao Qi, Xi Yin, Jun Xia, Jingyi Ren, Peijun Tang, Yuxiang Zhong, Yihao Chen, Xiaoqin Ren, Yuxin Liang, Liankai Huang, Kai Xie, Weikang Gui, Wei Tan, Shuanglong Sun, Yongquan Hu, Qinxian Liu, Nanjin Li, Chihao Dai, Lihua Wang, Xiaohui Liu, Lei Zhang, Yutao Xie

Large Language Models (LLMs) have demonstrated exceptional capabilities across various natural language processing tasks. Yet, many of these advanced LLMs are tailored for broad, general-purpose applications. In this technical report, we introduce AcademicGPT, designed specifically to empower academic research. AcademicGPT is a continual training model derived from LLaMA2-70B. Our training corpus mainly consists of academic papers, thesis, content from some academic domain, high-quality Chinese data and others. While it may not be extensive in data scale, AcademicGPT marks our initial venture into a domain-specific GPT tailored for research area. We evaluate AcademicGPT on several established public benchmarks such as MMLU and CEval, as well as on some specialized academic benchmarks like PubMedQA, SCIEval, and our newly-created ComputerScienceQA, to demonstrate its ability from general knowledge ability, to Chinese ability, and to academic ability. Building upon AcademicGPT's foundation model, we also developed several applications catered to the academic area, including General Academic Question Answering, AI-assisted Paper Reading, Paper Review, and AI-assisted Title and Abstract Generation.

* Technical Report. arXiv admin note: text overlap with arXiv:2310.12081, arXiv:2310.10053 by other authors 
Viaarxiv icon

LLaVA-Plus: Learning to Use Tools for Creating Multimodal Agents

Nov 09, 2023
Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang, Jianfeng Gao, Chunyuan Li

LLaVA-Plus is a general-purpose multimodal assistant that expands the capabilities of large multimodal models. It maintains a skill repository of pre-trained vision and vision-language models and can activate relevant tools based on users' inputs to fulfill real-world tasks. LLaVA-Plus is trained on multimodal instruction-following data to acquire the ability to use tools, covering visual understanding, generation, external knowledge retrieval, and compositions. Empirical results show that LLaVA-Plus outperforms LLaVA in existing capabilities and exhibits new ones. It is distinct in that the image query is directly grounded and actively engaged throughout the entire human-AI interaction sessions, significantly improving tool use performance and enabling new scenarios.

* 25 pages, 25M file size. Project Page: 
Viaarxiv icon

MatNexus: A Comprehensive Text Mining and Analysis Suite for Materials Discover

Nov 07, 2023
Lei Zhang, Markus Stricker

MatNexus is a specialized software for the automated collection, processing, and analysis of text from scientific articles. Through an integrated suite of modules, the MatNexus facilitates the retrieval of scientific articles, processes textual data for insights, generates vector representations suitable for machine learning, and offers visualization capabilities for word embeddings. With the vast volume of scientific publications, MatNexus stands out as an end-to-end tool for researchers aiming to gain insights from scientific literature in material science, making the exploration of materials, such as the electrocatalyst examples we show here, efficient and insightful.

* 15 pages, 6 figures, submission to SoftwareX 
Viaarxiv icon

Optimization-Free Test-Time Adaptation for Cross-Person Activity Recognition

Oct 28, 2023
Shuoyuan Wang, Jindong Wang, HuaJun Xi, Bob Zhang, Lei Zhang, Hongxin Wei

Human Activity Recognition (HAR) models often suffer from performance degradation in real-world applications due to distribution shifts in activity patterns across individuals. Test-Time Adaptation (TTA) is an emerging learning paradigm that aims to utilize the test stream to adjust predictions in real-time inference, which has not been explored in HAR before. However, the high computational cost of optimization-based TTA algorithms makes it intractable to run on resource-constrained edge devices. In this paper, we propose an Optimization-Free Test-Time Adaptation (OFTTA) framework for sensor-based HAR. OFTTA adjusts the feature extractor and linear classifier simultaneously in an optimization-free manner. For the feature extractor, we propose Exponential DecayTest-time Normalization (EDTN) to replace the conventional batch normalization (CBN) layers. EDTN combines CBN and Test-time batch Normalization (TBN) to extract reliable features against domain shifts with TBN's influence decreasing exponentially in deeper layers. For the classifier, we adjust the prediction by computing the distance between the feature and the prototype, which is calculated by a maintained support set. In addition, the update of the support set is based on the pseudo label, which can benefit from reliable features extracted by EDTN. Extensive experiments on three public cross-person HAR datasets and two different TTA settings demonstrate that OFTTA outperforms the state-of-the-art TTA approaches in both classification performance and computational efficiency. Finally, we verify the superiority of our proposed OFTTA on edge devices, indicating possible deployment in real applications. Our code is available at \href{}{this https URL}.

* To be presented at UbiComp 2024; Accepted by Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) 
Viaarxiv icon

A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication

Oct 26, 2023
Runze Cheng, Yao Sun, Dusit Niyato, Lan Zhang, Lei Zhang, Muhammad Ali Imran

Figure 1 for A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication
Figure 2 for A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication
Figure 3 for A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication
Figure 4 for A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication

Generative AI applications are recently catering to a vast user base by creating diverse and high-quality AI-generated content (AIGC). With the proliferation of mobile devices and rapid growth of mobile traffic, providing ubiquitous access to high-quality AIGC services via wireless communication networks is becoming the future direction for AIGC products. However, it is challenging to provide optimal AIGC services in wireless networks with unstable channels, limited bandwidth resources, and unevenly distributed computational resources. To tackle these challenges, we propose a semantic communication (SemCom)-empowered AIGC (SemAIGC) generation and transmission framework, where only semantic information of the content rather than all the binary bits should be extracted and transmitted by using SemCom. Specifically, SemAIGC integrates diffusion-based models within the semantic encoder and decoder for efficient content generation and flexible adjustment of the computing workload of both transmitter and receiver. Meanwhile, we devise a resource-aware workload trade-off (ROOT) scheme into the SemAIGC framework to intelligently decide transmitter/receiver workload, thus adjusting the utilization of computational resource according to service requirements. Simulations verify the superiority of our proposed SemAIGC framework in terms of latency and content quality compared to conventional approaches.

Viaarxiv icon

Adapt Anything: Tailor Any Image Classifiers across Domains And Categories Using Text-to-Image Diffusion Models

Oct 25, 2023
Weijie Chen, Haoyu Wang, Shicai Yang, Lei Zhang, Wei Wei, Yanning Zhang, Luojun Lin, Di Xie, Yueting Zhuang

Figure 1 for Adapt Anything: Tailor Any Image Classifiers across Domains And Categories Using Text-to-Image Diffusion Models
Figure 2 for Adapt Anything: Tailor Any Image Classifiers across Domains And Categories Using Text-to-Image Diffusion Models
Figure 3 for Adapt Anything: Tailor Any Image Classifiers across Domains And Categories Using Text-to-Image Diffusion Models
Figure 4 for Adapt Anything: Tailor Any Image Classifiers across Domains And Categories Using Text-to-Image Diffusion Models

We do not pursue a novel method in this paper, but aim to study if a modern text-to-image diffusion model can tailor any task-adaptive image classifier across domains and categories. Existing domain adaptive image classification works exploit both source and target data for domain alignment so as to transfer the knowledge learned from the labeled source data to the unlabeled target data. However, as the development of the text-to-image diffusion model, we wonder if the high-fidelity synthetic data from the text-to-image generator can serve as a surrogate of the source data in real world. In this way, we do not need to collect and annotate the source data for each domain adaptation task in a one-for-one manner. Instead, we utilize only one off-the-shelf text-to-image model to synthesize images with category labels derived from the corresponding text prompts, and then leverage the surrogate data as a bridge to transfer the knowledge embedded in the task-agnostic text-to-image generator to the task-oriented image classifier via domain adaptation. Such a one-for-all adaptation paradigm allows us to adapt anything in the world using only one text-to-image generator as well as the corresponding unlabeled target data. Extensive experiments validate the feasibility of the proposed idea, which even surpasses the state-of-the-art domain adaptation works using the source data collected and annotated in real world.

* 11 pages, 6 figures 
Viaarxiv icon

Inject Semantic Concepts into Image Tagging for Open-Set Recognition

Oct 23, 2023
Xinyu Huang, Yi-Jie Huang, Youcai Zhang, Weiwei Tian, Rui Feng, Yuejie Zhang, Yanchun Xie, Yaqian Li, Lei Zhang

In this paper, we introduce the Recognize Anything Plus Model~(RAM++), a fundamental image recognition model with strong open-set recognition capabilities, by injecting semantic concepts into image tagging training framework. Previous approaches are either image tagging models constrained by limited semantics, or vision-language models with shallow interaction for suboptimal performance in multi-tag recognition. In contrast, RAM++ integrates image-text alignment and image-tagging within a unified fine-grained interaction framework based on image-tags-text triplets. This design enables RAM++ not only excel in identifying predefined categories, but also significantly augment the recognition ability in open-set categories. Moreover, RAM++ employs large language models~(LLMs) to generate diverse visual tag descriptions, pioneering the integration of LLM's knowledge into image tagging training. This approach empowers RAM++ to integrate visual description concepts for open-set recognition during inference. Evaluations on comprehensive image recognition benchmarks demonstrate RAM++ exceeds existing state-of-the-art (SOTA) fundamental image recognition models on most aspects. Specifically, for predefined common-used tag categories, RAM++ showcases 10.2 mAP and 15.4 mAP enhancements over CLIP on OpenImages and ImageNet. For open-set categories beyond predefined, RAM++ records improvements of 5 mAP and 6.4 mAP over CLIP and RAM respectively on OpenImages. For diverse human-object interaction phrases, RAM++ achieves 7.8 mAP and 4.7 mAP improvements on the HICO benchmark. Code, datasets and pre-trained models are available at \url{}.

* Homepage: 
Viaarxiv icon

HumanTOMATO: Text-aligned Whole-body Motion Generation

Oct 19, 2023
Shunlin Lu, Ling-Hao Chen, Ailing Zeng, Jing Lin, Ruimao Zhang, Lei Zhang, Heung-Yeung Shum

Figure 1 for HumanTOMATO: Text-aligned Whole-body Motion Generation
Figure 2 for HumanTOMATO: Text-aligned Whole-body Motion Generation
Figure 3 for HumanTOMATO: Text-aligned Whole-body Motion Generation
Figure 4 for HumanTOMATO: Text-aligned Whole-body Motion Generation

This work targets a novel text-driven whole-body motion generation task, which takes a given textual description as input and aims at generating high-quality, diverse, and coherent facial expressions, hand gestures, and body motions simultaneously. Previous works on text-driven motion generation tasks mainly have two limitations: they ignore the key role of fine-grained hand and face controlling in vivid whole-body motion generation, and lack a good alignment between text and motion. To address such limitations, we propose a Text-aligned whOle-body Motion generATiOn framework, named HumanTOMATO, which is the first attempt to our knowledge towards applicable holistic motion generation in this research area. To tackle this challenging task, our solution includes two key designs: (1) a Holistic Hierarchical VQ-VAE (aka H$^2$VQ) and a Hierarchical-GPT for fine-grained body and hand motion reconstruction and generation with two structured codebooks; and (2) a pre-trained text-motion-alignment model to help generated motion align with the input textual description explicitly. Comprehensive experiments verify that our model has significant advantages in both the quality of generated motions and their alignment with text.

* 31 pages, 15 figures, 16 tables. Project page: 
Viaarxiv icon

Progressive3D: Progressively Local Editing for Text-to-3D Content Creation with Complex Semantic Prompts

Oct 18, 2023
Xinhua Cheng, Tianyu Yang, Jianan Wang, Yu Li, Lei Zhang, Jian Zhang, Li Yuan

Recent text-to-3D generation methods achieve impressive 3D content creation capacity thanks to the advances in image diffusion models and optimizing strategies. However, current methods struggle to generate correct 3D content for a complex prompt in semantics, i.e., a prompt describing multiple interacted objects binding with different attributes. In this work, we propose a general framework named Progressive3D, which decomposes the entire generation into a series of locally progressive editing steps to create precise 3D content for complex prompts, and we constrain the content change to only occur in regions determined by user-defined region prompts in each editing step. Furthermore, we propose an overlapped semantic component suppression technique to encourage the optimization process to focus more on the semantic differences between prompts. Extensive experiments demonstrate that the proposed Progressive3D framework generates precise 3D content for prompts with complex semantics and is general for various text-to-3D methods driven by different 3D representations.

* Project Page: 
Viaarxiv icon

Label-efficient Segmentation via Affinity Propagation

Oct 17, 2023
Wentong Li, Yuqian Yuan, Song Wang, Wenyu Liu, Dongqi Tang, Jian Liu, Jianke Zhu, Lei Zhang

Figure 1 for Label-efficient Segmentation via Affinity Propagation
Figure 2 for Label-efficient Segmentation via Affinity Propagation
Figure 3 for Label-efficient Segmentation via Affinity Propagation
Figure 4 for Label-efficient Segmentation via Affinity Propagation

Weakly-supervised segmentation with label-efficient sparse annotations has attracted increasing research attention to reduce the cost of laborious pixel-wise labeling process, while the pairwise affinity modeling techniques play an essential role in this task. Most of the existing approaches focus on using the local appearance kernel to model the neighboring pairwise potentials. However, such a local operation fails to capture the long-range dependencies and ignores the topology of objects. In this work, we formulate the affinity modeling as an affinity propagation process, and propose a local and a global pairwise affinity terms to generate accurate soft pseudo labels. An efficient algorithm is also developed to reduce significantly the computational cost. The proposed approach can be conveniently plugged into existing segmentation networks. Experiments on three typical label-efficient segmentation tasks, i.e. box-supervised instance segmentation, point/scribble-supervised semantic segmentation and CLIP-guided semantic segmentation, demonstrate the superior performance of the proposed approach.

* NeurIPS2023 Acceptance. Project Page: Code: 
Viaarxiv icon