Abstract:Traditional technology mapping suffers from systemic inaccuracies in delay estimation due to its reliance on abstract, technology-agnostic delay models that fail to capture the nuanced timing behavior behavior of real post-mapping circuits. To address this fundamental limitation, we introduce GPA(graph neural network (GNN)-based Path-Aware multi-view circuit learning), a novel GNN framework that learns precise, data-driven delay predictions by synergistically fusing three complementary views of circuit structure: And-Inverter Graphs (AIGs)-based functional encoding, post-mapping technology emphasizes critical timing paths. Trained exclusively on real cell delays extracted from critical paths of industrial-grade post-mapping netlists, GPA learns to classify cut delays with unprecedented accuracy, directly informing smarter mapping decisions. Evaluated on the 19 EPFL combinational benchmarks, GPA achieves 19.9%, 2.1% and 4.1% average delay reduction over the conventional heuristics methods (techmap, MCH) and the prior state-of-the-art ML-based approach SLAP, respectively-without compromising area efficiency.
Abstract:Synthetic Aperture Radar (SAR) imagery plays a critical role in all-weather, day-and-night remote sensing applications. However, existing SAR-oriented deep learning is constrained by data scarcity, while the physically grounded speckle noise in SAR imagery further hampers fine-grained semantic representation learning. To address these challenges, we propose SARMAE, a Noise-Aware Masked Autoencoder for self-supervised SAR representation learning. Specifically, we construct SAR-1M, the first million-scale SAR dataset, with additional paired optical images, to enable large-scale pre-training. Building upon this, we design Speckle-Aware Representation Enhancement (SARE), which injects SAR-specific speckle noise into masked autoencoders to facilitate noise-aware and robust representation learning. Furthermore, we introduce Semantic Anchor Representation Constraint (SARC), which leverages paired optical priors to align SAR features and ensure semantic consistency. Extensive experiments across multiple SAR datasets demonstrate that SARMAE achieves state-of-the-art performance on classification, detection, and segmentation tasks. Code and models will be available at https://github.com/MiliLab/SARMAE.
Abstract:Accurately quantifying vitiligo extent in routine clinical photographs is crucial for longitudinal monitoring of treatment response. We propose a trustworthy, frequency-aware segmentation framework built on three synergistic pillars: (1) a data-efficient training strategy combining domain-adaptive pre-training on the ISIC 2019 dataset with an ROI-constrained dual-task loss to suppress background noise; (2) an architectural refinement via a ConvNeXt V2-based encoder enhanced with a novel High-Frequency Spectral Gating (HFSG) module and stem-skip connections to capture subtle textures; and (3) a clinical trust mechanism employing K-fold ensemble and Test-Time Augmentation (TTA) to generate pixel-wise uncertainty maps. Extensive validation on an expert-annotated clinical cohort demonstrates superior performance, achieving a Dice score of 85.05% and significantly reducing boundary error (95% Hausdorff Distance improved from 44.79 px to 29.95 px), consistently outperforming strong CNN (ResNet-50 and UNet++) and Transformer (MiT-B5) baselines. Notably, our framework demonstrates high reliability with zero catastrophic failures and provides interpretable entropy maps to identify ambiguous regions for clinician review. Our approach suggests that the proposed framework establishes a robust and reliable standard for automated vitiligo assessment.
Abstract:Most text-to-video(T2V) diffusion models depend on pre-trained text encoders for semantic alignment, yet they often fail to maintain video quality when provided with concise prompts rather than well-designed ones. The primary issue lies in their limited textual semantics understanding. Moreover, these text encoders cannot rephrase prompts online to better align with user intentions, which limits both the scalability and usability of the models, To address these challenges, we introduce RISE-T2V, which uniquely integrates the processes of prompt rephrasing and semantic feature extraction into a single and seamless step instead of two separate steps. RISE-T2V is universal and can be applied to various pre-trained LLMs and video diffusion models(VDMs), significantly enhancing their capabilities for T2V tasks. We propose an innovative module called the Rephrasing Adapter, enabling diffusion models to utilize text hidden states during the next token prediction of the LLM as a condition for video generation. By employing a Rephrasing Adapter, the video generation model can implicitly rephrase basic prompts into more comprehensive representations that better match the user's intent. Furthermore, we leverage the powerful capabilities of LLMs to enable video generation models to accomplish a broader range of T2V tasks. Extensive experiments demonstrate that RISE-T2V is a versatile framework applicable to different video diffusion model architectures, significantly enhancing the ability of T2V models to generate high-quality videos that align with user intent. Visual results are available on the webpage at https://rise-t2v.github.io.
Abstract:Recent advances in image-to-video (I2V) generation have achieved remarkable progress in synthesizing high-quality, temporally coherent videos from static images. Among all the applications of I2V, human-centric video generation includes a large portion. However, existing I2V models encounter difficulties in maintaining identity consistency between the input human image and the generated video, especially when the person in the video exhibits significant expression changes and movements. This issue becomes critical when the human face occupies merely a small fraction of the image. Since humans are highly sensitive to identity variations, this poses a critical yet under-explored challenge in I2V generation. In this paper, we propose Identity-Preserving Reward-guided Optimization (IPRO), a novel video diffusion framework based on reinforcement learning to enhance identity preservation. Instead of introducing auxiliary modules or altering model architectures, our approach introduces a direct and effective tuning algorithm that optimizes diffusion models using a face identity scorer. To improve performance and accelerate convergence, our method backpropagates the reward signal through the last steps of the sampling chain, enabling richer gradient feedback. We also propose a novel facial scoring mechanism that treats faces in ground-truth videos as facial feature pools, providing multi-angle facial information to enhance generalization. A KL-divergence regularization is further incorporated to stabilize training and prevent overfitting to the reward signal. Extensive experiments on Wan 2.2 I2V model and our in-house I2V model demonstrate the effectiveness of our method. Our project and code are available at \href{https://ipro-alimama.github.io/}{https://ipro-alimama.github.io/}.




Abstract:Reinforcement learning (RL) is emerging as a powerful paradigm for enabling large language models (LLMs) to perform complex reasoning tasks. Recent advances indicate that integrating RL with retrieval-augmented generation (RAG) allows LLMs to dynamically incorporate external knowledge, leading to more informed and robust decision making. However, we identify a critical challenge during policy-driven trajectory sampling: LLMs are frequently trapped in unproductive reasoning paths, which we refer to as "dead ends", committing to overconfident yet incorrect conclusions. This severely hampers exploration and undermines effective policy optimization. To address this challenge, we propose REX-RAG (Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation), a novel framework that explores alternative reasoning paths while maintaining rigorous policy learning through principled distributional corrections. Our approach introduces two key innovations: (1) Mixed Sampling Strategy, which combines a novel probe sampling method with exploratory prompts to escape dead ends; and (2) Policy Correction Mechanism, which employs importance sampling to correct distribution shifts induced by mixed sampling, thereby mitigating gradient estimation bias. We evaluate it on seven question-answering benchmarks, and the experimental results show that REX-RAG achieves average performance gains of 5.1% on Qwen2.5-3B and 3.6% on Qwen2.5-7B over strong baselines, demonstrating competitive results across multiple datasets. The code is publicly available at https://github.com/MiliLab/REX-RAG.
Abstract:The application of large language models (LLMs) in the medical field has gained significant attention, yet their reasoning capabilities in more specialized domains like anesthesiology remain underexplored. In this paper, we systematically evaluate the reasoning capabilities of LLMs in anesthesiology and analyze key factors influencing their performance. To this end, we introduce AnesBench, a cross-lingual benchmark designed to assess anesthesiology-related reasoning across three levels: factual retrieval (System 1), hybrid reasoning (System 1.x), and complex decision-making (System 2). Through extensive experiments, we first explore how model characteristics, including model scale, Chain of Thought (CoT) length, and language transferability, affect reasoning performance. Then, we further evaluate the effectiveness of different training strategies, leveraging our curated anesthesiology-related dataset, including continuous pre-training (CPT) and supervised fine-tuning (SFT). Additionally, we also investigate how the test-time reasoning techniques, such as Best-of-N sampling and beam search, influence reasoning performance, and assess the impact of reasoning-enhanced model distillation, specifically DeepSeek-R1. We will publicly release AnesBench, along with our CPT and SFT training datasets and evaluation code at https://github.com/MiliLab/AnesBench.
Abstract:Despite the recent success of large language models (LLMs) in reasoning such as DeepSeek, we for the first time identify a key dilemma in reasoning robustness and generalization: significant performance degradation on novel or incomplete data, suggesting a reliance on memorized patterns rather than systematic reasoning. Our closer examination reveals four key unique limitations underlying this issue:(1) Positional bias--models favor earlier queries in multi-query inputs but answering the wrong one in the latter (e.g., GPT-4o's accuracy drops from 75.8 percent to 72.8 percent); (2) Instruction sensitivity--performance declines by 5.0 to 7.5 percent in the Qwen2.5 Series and by 5.0 percent in DeepSeek-V3 with auxiliary guidance; (3) Numerical fragility--value substitution sharply reduces accuracy (e.g., GPT-4o drops from 97.5 percent to 82.5 percent, GPT-o1-mini drops from 97.5 percent to 92.5 percent); and (4) Memory dependence--models resort to guesswork when missing critical data. These findings further highlight the reliance on heuristic recall over rigorous logical inference, demonstrating challenges in reasoning robustness. To comprehensively investigate these robustness challenges, this paper introduces a novel benchmark, termed as Math-RoB, that exploits hallucinations triggered by missing information to expose reasoning gaps. This is achieved by an instruction-based approach to generate diverse datasets that closely resemble training distributions, facilitating a holistic robustness assessment and advancing the development of more robust reasoning frameworks. Bad character(s) in field Abstract.
Abstract:Tree of Thoughts (ToT) enhances Large Language Model (LLM) reasoning by structuring problem-solving as a spanning tree. However, recent methods focus on search accuracy while overlooking computational efficiency. The challenges of accelerating the ToT lie in the frequent switching of reasoning focus, and the redundant exploration of suboptimal solutions. To alleviate this dilemma, we propose Dynamic Parallel Tree Search (DPTS), a novel parallelism framework that aims to dynamically optimize the reasoning path in inference. It includes the Parallelism Streamline in the generation phase to build up a flexible and adaptive parallelism with arbitrary paths by fine-grained cache management and alignment. Meanwhile, the Search and Transition Mechanism filters potential candidates to dynamically maintain the reasoning focus on more possible solutions and have less redundancy. Experiments on Qwen-2.5 and Llama-3 with Math500 and GSM8K datasets show that DPTS significantly improves efficiency by 2-4x on average while maintaining or even surpassing existing reasoning algorithms in accuracy, making ToT-based reasoning more scalable and computationally efficient.




Abstract:Due to spatial redundancy in remote sensing images, sparse tokens containing rich information are usually involved in self-attention (SA) to reduce the overall token numbers within the calculation, avoiding the high computational cost issue in Vision Transformers. However, such methods usually obtain sparse tokens by hand-crafted or parallel-unfriendly designs, posing a challenge to reach a better balance between efficiency and performance. Different from them, this paper proposes to use learnable meta tokens to formulate sparse tokens, which effectively learn key information meanwhile improving the inference speed. Technically, the meta tokens are first initialized from image tokens via cross-attention. Then, we propose Dual Cross-Attention (DCA) to promote information exchange between image tokens and meta tokens, where they serve as query and key (value) tokens alternatively in a dual-branch structure, significantly reducing the computational complexity compared to self-attention. By employing DCA in the early stages with dense visual tokens, we obtain the hierarchical architecture LeMeViT with various sizes. Experimental results in classification and dense prediction tasks show that LeMeViT has a significant $1.7 \times$ speedup, fewer parameters, and competitive performance compared to the baseline models, and achieves a better trade-off between efficiency and performance.