Department of Control Science and Engineering, Zhejiang University, China
Abstract:Time consumption and the complexity of manual layout design make automated layout generation a critical task, especially for multiple applications across different mobile devices. Existing graph-based layout generation approaches suffer from limited generative capability, often resulting in unreasonable and incompatible outputs. Meanwhile, vision based generative models tend to overlook the original structural information, leading to component intersections and overlaps. To address these challenges, we propose an Aggregation Structural Representation (ASR) module that integrates graph networks with large language models (LLMs) to preserve structural information while enhancing generative capability. This novel pipeline utilizes graph features as hierarchical prior knowledge, replacing the traditional Vision Transformer (ViT) module in multimodal large language models (MLLM) to predict full layout information for the first time. Moreover, the intermediate graph matrix used as input for the LLM is human editable, enabling progressive, human centric design generation. A comprehensive evaluation on the RICO dataset demonstrates the strong performance of ASR, both quantitatively using mean Intersection over Union (mIoU), and qualitatively through a crowdsourced user study. Additionally, sampling on relational features ensures diverse layout generation, further enhancing the adaptability and creativity of the proposed approach.
Abstract:Dataset distillation (DD) has witnessed significant progress in creating small datasets that encapsulate rich information from large original ones. Particularly, methods based on generative priors show promising performance, while maintaining computational efficiency and cross-architecture generalization. However, the generation process lacks explicit controllability for each sample. Previous distillation methods primarily match the real distribution from the perspective of the entire dataset, whereas overlooking concept completeness at the instance level. The missing or incorrectly represented object details cannot be efficiently compensated due to the constrained sample amount typical in DD settings. To this end, we propose incorporating the concept understanding of large language models (LLMs) to perform Concept-Informed Diffusion (CONCORD) for dataset distillation. Specifically, distinguishable and fine-grained concepts are retrieved based on category labels to inform the denoising process and refine essential object details. By integrating these concepts, the proposed method significantly enhances both the controllability and interpretability of the distilled image generation, without relying on pre-trained classifiers. We demonstrate the efficacy of CONCORD by achieving state-of-the-art performance on ImageNet-1K and its subsets. The code implementation is released in https://github.com/vimar-gu/CONCORD.
Abstract:Model pruning is a performance optimization technique for large language models like R1 or o3-mini. However, existing pruning methods often lead to significant performance degradation or require extensive retraining and fine-tuning. This technique aims to identify and remove neurons, connections unlikely leading to the contribution during the human-computer interaction phase. Our goal is to obtain a much smaller and faster knowledge distilled model that can quickly generate content almost as good as those of the unpruned ones. We propose MAMA Pruning, short for Movement and Magnitude Analysis, an improved pruning method that effectively reduces model size and computational complexity while maintaining performance comparable to the original unpruned model even at extreme pruned levels. The improved method is based on weights, bias fixed in the pre-training phase and GRPO rewards verified during the post-training phase as our novel pruning indicators. Preliminary experimental results show that our method outperforms and be comparable to state-of-the-art methods across various pruning levels and different downstream computational linguistics tasks.
Abstract:Recent forward prediction-based learned video compression (LVC) methods have achieved impressive results, even surpassing VVC reference software VTM under the Low Delay B (LDB) configuration. In contrast, learned bidirectional video compression (BVC) remains underexplored and still lags behind its forward-only counterparts. This performance gap is mainly due to the limited ability to extract diverse and accurate contexts: most existing BVCs primarily exploit temporal motion while neglecting non-local correlations across frames. Moreover, they lack the adaptability to dynamically suppress harmful contexts arising from fast motion or occlusion. To tackle these challenges, we propose BiECVC, a BVC framework that incorporates diversified local and non-local context modeling along with adaptive context gating. For local context enhancement, BiECVC reuses high-quality features from lower layers and aligns them using decoded motion vectors without introducing extra motion overhead. To model non-local dependencies efficiently, we adopt a linear attention mechanism that balances performance and complexity. To further mitigate the impact of inaccurate context prediction, we introduce Bidirectional Context Gating, inspired by data-dependent decay in recent autoregressive language models, to dynamically filter contextual information based on conditional coding results. Extensive experiments demonstrate that BiECVC achieves state-of-the-art performance, reducing the bit-rate by 13.4% and 15.7% compared to VTM 13.2 under the Random Access (RA) configuration with intra periods of 32 and 64, respectively. To our knowledge, BiECVC is the first learned video codec to surpass VTM 13.2 RA across all standard test datasets. Code will be available at https://github.com/JiangWeibeta/ECVC.
Abstract:Image denoising is essential in low-level vision applications such as photography and automated driving. Existing methods struggle with distinguishing complex noise patterns in real-world scenes and consume significant computational resources due to reliance on Transformer-based models. In this work, the Context-guided Receptance Weighted Key-Value (\M) model is proposed, combining enhanced multi-view feature integration with efficient sequence modeling. Our approach introduces the Context-guided Token Shift (CTS) paradigm, which effectively captures local spatial dependencies and enhance the model's ability to model real-world noise distributions. Additionally, the Frequency Mix (FMix) module extracting frequency-domain features is designed to isolate noise in high-frequency spectra, and is integrated with spatial representations through a multi-view learning process. To improve computational efficiency, the Bidirectional WKV (BiWKV) mechanism is adopted, enabling full pixel-sequence interaction with linear complexity while overcoming the causal selection constraints. The model is validated on multiple real-world image denoising datasets, outperforming the existing state-of-the-art methods quantitatively and reducing inference time up to 40\%. Qualitative results further demonstrate the ability of our model to restore fine details in various scenes.
Abstract:Recent advancements in learned image compression (LIC) have yielded impressive performance gains. Notably, the learned image compression models with multi-reference entropy models (MLIC series) have significantly outperformed existing traditional image codecs such as the Versatile Video Coding (VVC) Intra. In this paper, we present MLICv2 and MLICv2$^+$, enhanced versions of the MLIC series, featuring improved transform techniques, entropy modeling, and instance adaptability. For better transform, we introduce a simple token mixing transform block inspired by the meta transformer architecture, addressing the performance degradation at high bit-rates observed in previous MLIC series while maintaining computational efficiency. To enhance entropy modeling, we propose a hyperprior-guided global correlation prediction, enabling the capture of global contexts in the initial slice of the latent representation. We also develop a channel reweighting module to dynamically prioritize important channels within each context. Additionally, advanced positional embedding for context modeling and selective compression with guided optimization are investigated. To boost instance adaptability, we employ stochastic Gumbel annealing to iteratively refine the latent representation according to the rate-distortion optimization of a specific input image. This approach further enhances performance without impacting decoding speed. Experimental results demonstrate that our MLICv2 and MLICv2$^+$ achieve state-of-the-art performance, reducing Bjontegaard-Delta rate (BD-rate) by 16.54%, 21.61%, 16.05% and 20.46%, 24.35%, 19.14% respectively, compared to VTM-17.0 Intra on the Kodak, Tecnick, CLIC Pro Val dataset, respectively.
Abstract:In traditional cellular networks, users at the cell edge often suffer from poor quality of service (QoS) due to large distance-dependent path loss and severe inter-cell interference. While cell-free (CF) massive multi-input multi-out (MIMO) mitigates this issue by distributing access points (APs) to ensure uniform QoS, the deployment of numerous distributed APs and a fronthaul network incurs high infrastructure costs. To balance performance and cost efficiency, this article proposes a simplified design called hierarchical cell-free (HCF) massive MIMO. The key idea is to reduce the number of APs, thus minimizing the scale of the fronthaul network. The antennas from the decommissioned APs are aggregated at a central base station (cBS), which also serves as the coordinator for distributed APs. We derive closed-form expressions for uplink and downlink spectral efficiency (SE) for HCF, CF, and cellular massive MIMO under pilot contamination and correlated fading channels, considering the use of multi-antenna APs. Numerical results confirm that the hierarchical architecture achieves $95\%$-likely per-user SE comparable to CF, enhancing cell-edge user rates in cellular systems by over 100 times, while significantly reducing the complexity and cost of the fronthaul network in CF. We develop max-min fairness algorithms for joint power control of the cBS and APs in the downlink, and the users in the uplink. These algorithms not only boost fairness and system capacity but also dramatically lower transmission power, e.g., achieving over $70\%$ savings in uplink, particularly beneficial for battery-powered mobile devices.
Abstract:Tokenized visual representations have shown great promise in image compression, yet their extension to video remains underexplored due to the challenges posed by complex temporal dynamics and stringent bitrate constraints. In this paper, we propose Tokenized Video Compression (TVC), the first token-based dual-stream video compression framework designed to operate effectively at ultra-low bitrates. TVC leverages the powerful Cosmos video tokenizer to extract both discrete and continuous token streams. The discrete tokens (i.e., code maps generated by FSQ) are partially masked using a strategic masking scheme, then compressed losslessly with a discrete checkerboard context model to reduce transmission overhead. The masked tokens are reconstructed by a decoder-only transformer with spatiotemporal token prediction. Meanwhile, the continuous tokens, produced via an autoencoder (AE), are quantized and compressed using a continuous checkerboard context model, providing complementary continuous information at ultra-low bitrate. At the Decoder side, both streams are fused using ControlNet, with multi-scale hierarchical integration to ensure high perceptual quality alongside strong fidelity in reconstruction. This work mitigates the long-standing skepticism about the practicality of tokenized video compression and opens up new avenues for semantics-aware, token-native video compression.
Abstract:Controllable character animation remains a challenging problem, particularly in handling rare poses, stylized characters, character-object interactions, complex illumination, and dynamic scenes. To tackle these issues, prior work has largely focused on injecting pose and appearance guidance via elaborate bypass networks, but often struggles to generalize to open-world scenarios. In this paper, we propose a new perspective that, as long as the foundation model is powerful enough, straightforward model modifications with flexible fine-tuning strategies can largely address the above challenges, taking a step towards controllable character animation in the wild. Specifically, we introduce RealisDance-DiT, built upon the Wan-2.1 video foundation model. Our sufficient analysis reveals that the widely adopted Reference Net design is suboptimal for large-scale DiT models. Instead, we demonstrate that minimal modifications to the foundation model architecture yield a surprisingly strong baseline. We further propose the low-noise warmup and "large batches and small iterations" strategies to accelerate model convergence during fine-tuning while maximally preserving the priors of the foundation model. In addition, we introduce a new test dataset that captures diverse real-world challenges, complementing existing benchmarks such as TikTok dataset and UBC fashion video dataset, to comprehensively evaluate the proposed method. Extensive experiments show that RealisDance-DiT outperforms existing methods by a large margin.
Abstract:Recently, learned video compression (LVC) has shown superior performance under low-delay configuration. However, the performance of learned bi-directional video compression (LBVC) still lags behind traditional bi-directional coding. The performance gap mainly arises from inaccurate long-term motion estimation and prediction of distant frames, especially in large motion scenes. To solve these two critical problems, this paper proposes a novel LBVC framework, namely L-LBVC. Firstly, we propose an adaptive motion estimation module that can handle both short-term and long-term motions. Specifically, we directly estimate the optical flows for adjacent frames and non-adjacent frames with small motions. For non-adjacent frames with large motions, we recursively accumulate local flows between adjacent frames to estimate long-term flows. Secondly, we propose an adaptive motion prediction module that can largely reduce the bit cost for motion coding. To improve the accuracy of long-term motion prediction, we adaptively downsample reference frames during testing to match the motion ranges observed during training. Experiments show that our L-LBVC significantly outperforms previous state-of-the-art LVC methods and even surpasses VVC (VTM) on some test datasets under random access configuration.