Abstract:Cloud-based mobile agents powered by (multimodal) large language models ((M)LLMs) offer strong reasoning abilities but suffer from high latency and cost. While fine-tuned (M)SLMs enable edge deployment, they often lose general capabilities and struggle with complex tasks. To address this, we propose EcoAgent, an Edge-Cloud cOllaborative multi-agent framework for mobile automation. EcoAgent features a closed-loop collaboration among a cloud-based Planning Agent and two edge-based agents: the Execution Agent for action execution and the Observation Agent for verifying outcomes. The Observation Agent uses a Pre-Understanding Module to compress screen images into concise text, reducing token usage. In case of failure, the Planning Agent retrieves screen history and replans via a Reflection Module. Experiments on AndroidWorld show that EcoAgent maintains high task success rates while significantly reducing MLLM token consumption, enabling efficient and practical mobile automation.
Abstract:Multimodal Large Language Models (MLLMs) have powered Graphical User Interface (GUI) Agents, showing promise in automating tasks on computing devices. Recent works have begun exploring reasoning in GUI tasks with encouraging results. However, many current approaches rely on manually designed reasoning templates, which may result in reasoning that is not sufficiently robust and adaptive for complex GUI environments. Meanwhile, some existing agents continue to operate as Reactive Actors, relying primarily on implicit reasoning that may lack sufficient depth for GUI tasks demanding planning and error recovery. We argue that advancing these agents requires a shift from reactive acting towards acting based on deliberate reasoning. To facilitate this transformation, we introduce InfiGUI-R1, an MLLM-based GUI agent developed through our Actor2Reasoner framework, a reasoning-centric, two-stage training approach designed to progressively evolve agents from Reactive Actors to Deliberative Reasoners. The first stage, Reasoning Injection, focuses on establishing a basic reasoner. We employ Spatial Reasoning Distillation to transfer cross-modal spatial reasoning capabilities from teacher models to MLLMs through trajectories with explicit reasoning steps, enabling models to integrate GUI visual-spatial information with logical reasoning before action generation. The second stage, Deliberation Enhancement, refines the basic reasoner into a deliberative one using Reinforcement Learning. This stage introduces two approaches: Sub-goal Guidance, which rewards models for generating accurate intermediate sub-goals, and Error Recovery Scenario Construction, which creates failure-and-recovery training scenarios from identified prone-to-error steps. Experimental results show InfiGUI-R1 achieves strong performance in GUI grounding and trajectory tasks. Resources at https://github.com/Reallm-Labs/InfiGUI-R1.