



Abstract:Despite the rapid progress of deep learning in video action recognition (VAR) in recent years, privacy leakage in videos remains a critical concern. Current state-of-the-art privacy-preserving methods often rely on anonymization. These methods suffer from (1) low concealment, where producing visually distorted videos that attract attackers' attention during transmission, and (2) spatiotemporal disruption, where degrading essential spatiotemporal features for accurate VAR. To address these issues, we propose StegaVAR, a novel framework that embeds action videos into ordinary cover videos and directly performs VAR in the steganographic domain for the first time. Throughout both data transmission and action analysis, the spatiotemporal information of hidden secret video remains complete, while the natural appearance of cover videos ensures the concealment of transmission. Considering the difficulty of steganographic domain analysis, we propose Secret Spatio-Temporal Promotion (STeP) and Cross-Band Difference Attention (CroDA) for analysis within the steganographic domain. STeP uses the secret video to guide spatiotemporal feature extraction in the steganographic domain during training. CroDA suppresses cover interference by capturing cross-band semantic differences. Experiments demonstrate that StegaVAR achieves superior VAR and privacy-preserving performance on widely used datasets. Moreover, our framework is effective for multiple steganographic models.
Abstract:Large language models (LLMs) generate high-dimensional embeddings that capture rich semantic and syntactic information. However, high-dimensional embeddings exacerbate computational complexity and storage requirements, thereby hindering practical deployment. To address these challenges, we propose a novel training framework named Sequential Matryoshka Embedding Compression (SMEC). This framework introduces the Sequential Matryoshka Representation Learning(SMRL) method to mitigate gradient variance during training, the Adaptive Dimension Selection (ADS) module to reduce information degradation during dimension pruning, and the Selectable Cross-batch Memory (S-XBM) module to enhance unsupervised learning between high- and low-dimensional embeddings. Experiments on image, text, and multimodal datasets demonstrate that SMEC achieves significant dimensionality reduction while maintaining performance. For instance, on the BEIR dataset, our approach improves the performance of compressed LLM2Vec embeddings (256 dimensions) by 1.1 points and 2.7 points compared to the Matryoshka-Adaptor and Search-Adaptor models, respectively.