Text-to-image generation is the process of generating images from textual descriptions using deep learning techniques.
Multimodal large language models (MLLMs) have rapidly advanced, yet their adoption in medicine remains limited by gaps in domain coverage, modality alignment, and grounded reasoning. In this work, we introduce MedMO, a medical foundation model built upon a generalized MLLM architecture and trained exclusively on large-scale, domain-specific data. MedMO follows a multi-stage training recipe: (i) cross-modal pretraining to align heterogeneous visual encoders with a medical language backbone; (ii) instruction tuning on multi-task supervision that spans captioning, VQA, report generation, retrieval, and grounded disease localization with bounding boxes; and (iii) reinforcement learning with verifiable rewards that combine factuality checks with a box-level GIoU reward to strengthen spatial grounding and step-by-step reasoning in complex clinical scenarios. MedMO consistently outperforms strong open-source medical MLLMs across multiple modalities and tasks. On VQA benchmarks, MedMO achieves an average accuracy improvement of +13.7% over the baseline and performs within 1.9% of the SOTA Fleming-VL. For text-based QA, it attains +6.9% over the baseline and +14.5% over Fleming-VL. In medical report generation, MedMO delivers significant gains in both semantic and clinical accuracy. Moreover, it exhibits strong grounding capability, achieving an IoU improvement of +40.4 over the baseline and +37.0% over Fleming-VL, underscoring its robust spatial reasoning and localization performance. Evaluations across radiology, ophthalmology, and pathology-microscopy confirm MedMO's broad cross-modality generalization. We release two versions of MedMO: 4B and 8B. Project is available at https://genmilab.github.io/MedMO-Page
While generative video models have achieved remarkable visual fidelity, their capacity to internalize and reason over implicit world rules remains a critical yet under-explored frontier. To bridge this gap, we present RISE-Video, a pioneering reasoning-oriented benchmark for Text-Image-to-Video (TI2V) synthesis that shifts the evaluative focus from surface-level aesthetics to deep cognitive reasoning. RISE-Video comprises 467 meticulously human-annotated samples spanning eight rigorous categories, providing a structured testbed for probing model intelligence across diverse dimensions, ranging from commonsense and spatial dynamics to specialized subject domains. Our framework introduces a multi-dimensional evaluation protocol consisting of four metrics: \textit{Reasoning Alignment}, \textit{Temporal Consistency}, \textit{Physical Rationality}, and \textit{Visual Quality}. To further support scalable evaluation, we propose an automated pipeline leveraging Large Multimodal Models (LMMs) to emulate human-centric assessment. Extensive experiments on 11 state-of-the-art TI2V models reveal pervasive deficiencies in simulating complex scenarios under implicit constraints, offering critical insights for the advancement of future world-simulating generative models.
Text-to-image (T2I) generation has achieved remarkable progress, yet existing methods often lack the ability to dynamically reason and refine during generation--a hallmark of human creativity. Current reasoning-augmented paradigms most rely on explicit thought processes, where intermediate reasoning is decoded into discrete text at fixed steps with frequent image decoding and re-encoding, leading to inefficiencies, information loss, and cognitive mismatches. To bridge this gap, we introduce LatentMorph, a novel framework that seamlessly integrates implicit latent reasoning into the T2I generation process. At its core, LatentMorph introduces four lightweight components: (i) a condenser for summarizing intermediate generation states into compact visual memory, (ii) a translator for converting latent thoughts into actionable guidance, (iii) a shaper for dynamically steering next image token predictions, and (iv) an RL-trained invoker for adaptively determining when to invoke reasoning. By performing reasoning entirely in continuous latent spaces, LatentMorph avoids the bottlenecks of explicit reasoning and enables more adaptive self-refinement. Extensive experiments demonstrate that LatentMorph (I) enhances the base model Janus-Pro by $16\%$ on GenEval and $25\%$ on T2I-CompBench; (II) outperforms explicit paradigms (e.g., TwiG) by $15\%$ and $11\%$ on abstract reasoning tasks like WISE and IPV-Txt, (III) while reducing inference time by $44\%$ and token consumption by $51\%$; and (IV) exhibits $71\%$ cognitive alignment with human intuition on reasoning invocation.
While text-to-image generation has achieved unprecedented fidelity, the vast majority of existing models function fundamentally as static text-to-pixel decoders. Consequently, they often fail to grasp implicit user intentions. Although emerging unified understanding-generation models have improved intent comprehension, they still struggle to accomplish tasks involving complex knowledge reasoning within a single model. Moreover, constrained by static internal priors, these models remain unable to adapt to the evolving dynamics of the real world. To bridge these gaps, we introduce Mind-Brush, a unified agentic framework that transforms generation into a dynamic, knowledge-driven workflow. Simulating a human-like 'think-research-create' paradigm, Mind-Brush actively retrieves multimodal evidence to ground out-of-distribution concepts and employs reasoning tools to resolve implicit visual constraints. To rigorously evaluate these capabilities, we propose Mind-Bench, a comprehensive benchmark comprising 500 distinct samples spanning real-time news, emerging concepts, and domains such as mathematical and Geo-Reasoning. Extensive experiments demonstrate that Mind-Brush significantly enhances the capabilities of unified models, realizing a zero-to-one capability leap for the Qwen-Image baseline on Mind-Bench, while achieving superior results on established benchmarks like WISE and RISE.
Video motion transfer aims to synthesize videos by generating visual content according to a text prompt while transferring the motion pattern observed in a reference video. Recent methods predominantly use the Diffusion Transformer (DiT) architecture. To achieve satisfactory runtime, several methods attempt to accelerate the computations in the DiT, but fail to address structural sources of inefficiency. In this work, we identify and remove two types of computational redundancy in earlier work: motion redundancy arises because the generic DiT architecture does not reflect the fact that frame-to-frame motion is small and smooth; gradient redundancy occurs if one ignores that gradients change slowly along the diffusion trajectory. To mitigate motion redundancy, we mask the corresponding attention layers to a local neighborhood such that interaction weights are not computed unnecessarily distant image regions. To exploit gradient redundancy, we design an optimization scheme that reuses gradients from previous diffusion steps and skips unwarranted gradient computations. On average, FastVMT achieves a 3.43x speedup without degrading the visual fidelity or the temporal consistency of the generated videos.
Recent advances in flow matching models, particularly with reinforcement learning (RL), have significantly enhanced human preference alignment in few step text to image generators. However, existing RL based approaches for flow matching models typically rely on numerous denoising steps, while suffering from sparse and imprecise reward signals that often lead to suboptimal alignment. To address these limitations, we propose Temperature Annealed Few step Sampling with Group Relative Policy Optimization (TAFS GRPO), a novel framework for training flow matching text to image models into efficient few step generators well aligned with human preferences. Our method iteratively injects adaptive temporal noise onto the results of one step samples. By repeatedly annealing the model's sampled outputs, it introduces stochasticity into the sampling process while preserving the semantic integrity of each generated image. Moreover, its step aware advantage integration mechanism combines the GRPO to avoid the need for the differentiable of reward function and provide dense and step specific rewards for stable policy optimization. Extensive experiments demonstrate that TAFS GRPO achieves strong performance in few step text to image generation and significantly improves the alignment of generated images with human preferences. The code and models of this work will be available to facilitate further research.
With the increasing versatility of text-to-image diffusion models, the ability to selectively erase undesirable concepts (e.g., harmful content) has become indispensable. However, existing concept erasure approaches primarily focus on removing unsafe concepts without providing guidance toward corresponding safe alternatives, which often leads to failure in preserving the structural and semantic consistency between the original and erased generations. In this paper, we propose a novel framework, PAIRed Erasing (PAIR), which reframes concept erasure from simple removal to consistency-preserving semantic realignment using unsafe-safe pairs. We first generate safe counterparts from unsafe inputs while preserving structural and semantic fidelity, forming paired unsafe-safe multimodal data. Leveraging these pairs, we introduce two key components: (1) Paired Semantic Realignment, a guided objective that uses unsafe-safe pairs to explicitly map target concepts to semantically aligned safe anchors; and (2) Fisher-weighted Initialization for DoRA, which initializes parameter-efficient low-rank adaptation matrices using unsafe-safe pairs, encouraging the generation of safe alternatives while selectively suppressing unsafe concepts. Together, these components enable fine-grained erasure that removes only the targeted concepts while maintaining overall semantic consistency. Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art baselines, achieving effective concept erasure while preserving structural integrity, semantic coherence, and generation quality.
Masked diffusion models have emerged as a powerful framework for text and multimodal generation. However, their sampling procedure updates multiple tokens simultaneously and treats generated tokens as immutable, which may lead to error accumulation when early mistakes cannot be revised. In this work, we revisit existing self-correction methods and identify limitations stemming from additional training requirements or reliance on misaligned likelihood estimates. We propose a training-free self-correction framework that exploits the inductive biases of pre-trained masked diffusion models. Without modifying model parameters or introducing auxiliary evaluators, our method significantly improves generation quality on text-to-image generation and multimodal understanding tasks with reduced sampling steps. Moreover, the proposed framework generalizes across different masked diffusion architectures, highlighting its robustness and practical applicability. Code can be found in https://github.com/huge123/FreeCorrection.
Recent DiT-based text-to-image models increasingly adopt LLMs as text encoders, yet text conditioning remains largely static and often utilizes only a single LLM layer, despite pronounced semantic hierarchy across LLM layers and non-stationary denoising dynamics over both diffusion time and network depth. To better match the dynamic process of DiT generation and thereby enhance the diffusion model's generative capability, we introduce a unified normalized convex fusion framework equipped with lightweight gates to systematically organize multi-layer LLM hidden states via time-wise, depth-wise, and joint fusion. Experiments establish Depth-wise Semantic Routing as the superior conditioning strategy, consistently improving text-image alignment and compositional generation (e.g., +9.97 on the GenAI-Bench Counting task). Conversely, we find that purely time-wise fusion can paradoxically degrade visual generation fidelity. We attribute this to a train-inference trajectory mismatch: under classifier-free guidance, nominal timesteps fail to track the effective SNR, causing semantically mistimed feature injection during inference. Overall, our results position depth-wise routing as a strong and effective baseline and highlight the critical need for trajectory-aware signals to enable robust time-dependent conditioning.
Re-ranking plays a crucial role in modern information search systems by refining the ranking of initial search results to better satisfy user information needs. However, existing methods show two notable limitations in improving user search satisfaction: inadequate modeling of multifaceted user intents and neglect of rich side information such as visual perception signals. To address these challenges, we propose the Rich-Media Re-Ranker framework, which aims to enhance user search satisfaction through multi-dimensional and fine-grained modeling. Our approach begins with a Query Planner that analyzes the sequence of query refinements within a session to capture genuine search intents, decomposing the query into clear and complementary sub-queries to enable broader coverage of users' potential intents. Subsequently, moving beyond primary text content, we integrate richer side information of candidate results, including signals modeling visual content generated by the VLM-based evaluator. These comprehensive signals are then processed alongside carefully designed re-ranking principle that considers multiple facets, including content relevance and quality, information gain, information novelty, and the visual presentation of cover images. Then, the LLM-based re-ranker performs the holistic evaluation based on these principles and integrated signals. To enhance the scenario adaptability of the VLM-based evaluator and the LLM-based re-ranker, we further enhance their capabilities through multi-task reinforcement learning. Extensive experiments demonstrate that our method significantly outperforms state-of-the-art baselines. Notably, the proposed framework has been deployed in a large-scale industrial search system, yielding substantial improvements in online user engagement rates and satisfaction metrics.