Abstract:Medical Visual Question Answering (MVQA) systems can interpret medical images in response to natural language queries. However, linguistic variability in question phrasing often undermines the consistency of these systems. To address this challenge, we propose a Semantically Equivalent Question Augmentation (SEQA) framework, which leverages large language models (LLMs) to generate diverse yet semantically equivalent rephrasings of questions. Specifically, this approach enriches linguistic diversity while preserving semantic meaning. We further introduce an evaluation metric, Total Agreement Rate with Semantically Equivalent Input and Correct Answer (TAR-SC), which assesses a model's capability to generate consistent and correct responses to semantically equivalent linguistic variations. In addition, we also propose three other diversity metrics - average number of QA items per image (ANQI), average number of questions per image with the same answer (ANQA), and average number of open-ended questions per image with the same semantics (ANQS). Using the SEQA framework, we augmented the benchmarked MVQA public datasets of SLAKE, VQA-RAD, and PathVQA. As a result, all three datasets achieved significant improvements by incorporating more semantically equivalent questions: ANQI increased by an average of 86.1, ANQA by 85.1, and ANQS by 46. Subsequent experiments evaluate three MVQA models (M2I2, MUMC, and BiomedGPT) under both zero-shot and fine-tuning settings on the enhanced datasets. Experimental results in MVQA datasets show that fine-tuned models achieve an average accuracy improvement of 19.35%, while our proposed TAR-SC metric shows an average improvement of 11. 61%, indicating a substantial enhancement in model consistency.
Abstract:Clinical document classification is essential for converting unstructured medical texts into standardised ICD-10 diagnoses, yet it faces challenges due to complex medical language, privacy constraints, and limited annotated datasets. Large Language Models (LLMs) offer promising improvements in accuracy and efficiency for this task. This study evaluates the performance and consistency of eight LLMs; four reasoning (Qwen QWQ, Deepseek Reasoner, GPT o3 Mini, Gemini 2.0 Flash Thinking) and four non-reasoning (Llama 3.3, GPT 4o Mini, Gemini 2.0 Flash, Deepseek Chat); in classifying clinical discharge summaries using the MIMIC-IV dataset. Using cTAKES to structure clinical narratives, models were assessed across three experimental runs, with majority voting determining final predictions. Results showed that reasoning models outperformed non-reasoning models in accuracy (71% vs 68%) and F1 score (67% vs 60%), with Gemini 2.0 Flash Thinking achieving the highest accuracy (75%) and F1 score (76%). However, non-reasoning models demonstrated greater stability (91% vs 84% consistency). Performance varied across ICD-10 codes, with reasoning models excelling in complex cases but struggling with abstract categories. Findings indicate a trade-off between accuracy and consistency, suggesting that a hybrid approach could optimise clinical coding. Future research should explore multi-label classification, domain-specific fine-tuning, and ensemble methods to enhance model reliability in real-world applications.
Abstract:Traditional Multi-level Hierarchical Classification (MLHC) classifiers often rely on backbone models with $n$ independent output layers. This structure tends to overlook the hierarchical relationships between classes, leading to inconsistent predictions that violate the underlying taxonomy. Additionally, once a backbone architecture for an MLHC classifier is selected, adapting the model to accommodate new tasks can be challenging. For example, incorporating fairness to protect sensitive attributes within a hierarchical classifier necessitates complex adjustments to maintain the class hierarchy while enforcing fairness constraints. In this paper, we extend this concept to hierarchical classification by introducing a fair, model-agnostic layer designed to enforce taxonomy and optimize specific objectives, including consistency, fairness, and exact match. Our evaluations demonstrate that the proposed layer not only improves the fairness of predictions but also enforces the taxonomy, resulting in consistent predictions and superior performance. Compared to Large Language Models (LLMs) employing in-processing de-biasing techniques and models without any bias correction, our approach achieves better outcomes in both fairness and accuracy, making it particularly valuable in sectors like e-commerce, healthcare, and education, where predictive reliability is crucial.
Abstract:Large Multimodal Models (LMMs) are increasingly vulnerable to AI-generated extremist content, including photorealistic images and text, which can be used to bypass safety mechanisms and generate harmful outputs. However, existing datasets for evaluating LMM robustness offer limited exploration of extremist content, often lacking AI-generated images, diverse image generation models, and comprehensive coverage of historical events, which hinders a complete assessment of model vulnerabilities. To fill this gap, we introduce ExtremeAIGC, a benchmark dataset and evaluation framework designed to assess LMM vulnerabilities against such content. ExtremeAIGC simulates real-world events and malicious use cases by curating diverse text- and image-based examples crafted using state-of-the-art image generation techniques. Our study reveals alarming weaknesses in LMMs, demonstrating that even cutting-edge safety measures fail to prevent the generation of extremist material. We systematically quantify the success rates of various attack strategies, exposing critical gaps in current defenses and emphasizing the need for more robust mitigation strategies.
Abstract:Recent advancements in Large Language Models (LLMs) have significantly improved text generation capabilities. However, they also present challenges, particularly in generating vaccine-related misinformation, which poses risks to public health. Despite research on human-authored misinformation, a notable gap remains in understanding how LLMs contribute to vaccine misinformation and how best to detect it. Existing benchmarks often overlook vaccine-specific misinformation and the diverse roles of misinformation spreaders. This paper introduces VaxGuard, a novel dataset designed to address these challenges. VaxGuard includes vaccine-related misinformation generated by multiple LLMs and provides a comprehensive framework for detecting misinformation across various roles. Our findings show that GPT-3.5 and GPT-4o consistently outperform other LLMs in detecting misinformation, especially when dealing with subtle or emotionally charged narratives. On the other hand, PHI3 and Mistral show lower performance, struggling with precision and recall in fear-driven contexts. Additionally, detection performance tends to decline as input text length increases, indicating the need for improved methods to handle larger content. These results highlight the importance of role-specific detection strategies and suggest that VaxGuard can serve as a key resource for improving the detection of LLM-generated vaccine misinformation.
Abstract:Frequent fluctuations of client nodes in highly dynamic mobile clusters can lead to significant changes in feature space distribution and data drift, posing substantial challenges to the robustness of existing federated learning (FL) strategies. To address these issues, we proposed a mobile cluster federated learning framework (MoCFL). MoCFL enhances feature aggregation by introducing an affinity matrix that quantifies the similarity between local feature extractors from different clients, addressing dynamic data distribution changes caused by frequent client churn and topology changes. Additionally, MoCFL integrates historical and current feature information when training the global classifier, effectively mitigating the catastrophic forgetting problem frequently encountered in mobile scenarios. This synergistic combination ensures that MoCFL maintains high performance and stability in dynamically changing mobile environments. Experimental results on the UNSW-NB15 dataset show that MoCFL excels in dynamic environments, demonstrating superior robustness and accuracy while maintaining reasonable training costs.
Abstract:Alignment techniques have become central to ensuring that Large Language Models (LLMs) generate outputs consistent with human values. However, existing alignment paradigms often model an averaged or monolithic preference, failing to account for the diversity of perspectives across cultures, demographics, and communities. This limitation is particularly critical in health-related scenarios, where plurality is essential due to the influence of culture, religion, personal values, and conflicting opinions. Despite progress in pluralistic alignment, no prior work has focused on health, likely due to the unavailability of publicly available datasets. To address this gap, we introduce VITAL, a new benchmark dataset comprising 13.1K value-laden situations and 5.4K multiple-choice questions focused on health, designed to assess and benchmark pluralistic alignment methodologies. Through extensive evaluation of eight LLMs of varying sizes, we demonstrate that existing pluralistic alignment techniques fall short in effectively accommodating diverse healthcare beliefs, underscoring the need for tailored AI alignment in specific domains. This work highlights the limitations of current approaches and lays the groundwork for developing health-specific alignment solutions.
Abstract:We introduce a novel non-cooperative game to analyse opinion formation and resistance, incorporating principles from social psychology such as confirmation bias, resource constraints, and influence penalties. Our simulation features Large Language Model (LLM) agents competing to influence a population, with penalties imposed for generating messages that propagate or counter misinformation. This framework integrates resource optimisation into the agents' decision-making process. Our findings demonstrate that while higher confirmation bias strengthens opinion alignment within groups, it also exacerbates overall polarisation. Conversely, lower confirmation bias leads to fragmented opinions and limited shifts in individual beliefs. Investing heavily in a high-resource debunking strategy can initially align the population with the debunking agent, but risks rapid resource depletion and diminished long-term influence.
Abstract:Large Language Models (LLMs) are widely used as conversational agents, exploiting their capabilities in various sectors such as education, law, medicine, and more. However, LLMs are often subjected to context-shifting behaviour, resulting in a lack of consistent and interpretable personality-aligned interactions. Adherence to psychological traits lacks comprehensive analysis, especially in the case of dyadic (pairwise) conversations. We examine this challenge from two viewpoints, initially using two conversation agents to generate a discourse on a certain topic with an assigned personality from the OCEAN framework (Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism) as High/Low for each trait. This is followed by using multiple judge agents to infer the original traits assigned to explore prediction consistency, inter-model agreement, and alignment with the assigned personality. Our findings indicate that while LLMs can be guided toward personality-driven dialogue, their ability to maintain personality traits varies significantly depending on the combination of models and discourse settings. These inconsistencies emphasise the challenges in achieving stable and interpretable personality-aligned interactions in LLMs.
Abstract:Psychological assessment tools have long helped humans understand behavioural patterns. While Large Language Models (LLMs) can generate content comparable to that of humans, we explore whether they exhibit personality traits. To this end, this work applies psychological tools to LLMs in diverse scenarios to generate personality profiles. Using established trait-based questionnaires such as the Big Five Inventory and by addressing the possibility of training data contamination, we examine the dimensional variability and dominance of LLMs across five core personality dimensions: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. Our findings reveal that LLMs exhibit unique dominant traits, varying characteristics, and distinct personality profiles even within the same family of models.